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1. (AG) For any 0 < k < m ≤ n ∈ Z, let M ∼= Pmn−1 be the space of nonzero
m × n matrices mod scalars, and let Mk ⊂ M be the subset of matrices of
rank k or less.

(a) Show that Mk is closed in M (in the Zariski topology).

(b) Show that Mk is irreducible.

(c) What is the dimension of Mk?

(d) What is the degree of M1?

Solution: For the first, Mk is the zero locus of the (k + 1) × (k + 1) minors,
which are homogeneous polynomials of degree k + 1 on M ∼= Pmn−1. For the
second and third, we introduce the incidence correspondence

Φ = {(Λ, A) ∈ G(n− k, n) | Λ ⊂ ker(A)}.

Since Φ is fibered over G(n − k, n) with fibers Pkm−1, it is irreducible of
dimension k(n−k)+km−1 = mn−1−(m−k)(n−k); since it is generically one-
to-one over Mk, we conclude that Mk is likewise irreducible of that dimension.
Finally, M1 is the Segre variety Pm−1 × Pn−1 ⊂ Pmm−1, which has degree(
m+n−2
m−1

)
.

2. (A) Let S3 be the group of automorphisms of a 3-element set.

(a) Classify the conjugacy classes of S3.

(b) Classify the irreducible representations of S3.

(c) Write the character table for S3.

Solution: (a) Conjugacy classes of symmetric groups are given by the types of
cycles one can write on the set of n elements. For n = 3, we have shapes given
by (1), (12), (123) so we have three conjugacy classes. (b) By the orthogonality
relations, the number of irreps are equal to the number of conjugacy classes.
On the other hand, we can produce three irreps: The trivial, the sign, and
the geometric representation corresponding to S3

∼= D6; i.e., the symmetries
of an equilateral triangle embedded in R2. (c) Compute the traces of each
conjugacy class. End up with the table

(1) (12) (123)
triv 1 1 1
sign 1 -1 1
geom 2 0 -1



3. (DG) Let x, y, z be the standard coordinates on R3. Consider the unit sphere
S2 ⊂ R3.

1. Compute the critical points of the function x|S2 . Show that they are
isolated and non-degenerate.

2. Equip S2 with the standard metric induced from R3. Compute the gra-
dient vector field of x|S2 . Compute the integral curves of this vector
field.

Solution:

1. The unit sphere is defined by x2 + y2 + z2 = 1. Regarding y, z as in-
dependent variables and x as dependent variable, we have the equations
2x∂yx+ 2y = 0 and 2x∂zx+ 2z = 0. For a critical point, ∂yx = ∂zx = 0,
and hence y = z = 0. Then x = ±1. Hence the critical points are (1, 0, 0)
and (−1, 0, 0).

They are isolated in S2. Differentiating once more and put x = ±1
and y = z = 0 for computing the Hessians, we get ∂y∂zx = 0 and
∂2
yx = ∂2

zx = ∓1. Hence the Hessians at the critical points are non-
degenerate.

2. The gradient vector field is

V (x, y, z) = (1, 0, 0)− 〈(1, 0, 0), (x, y, z)〉(x, y, z) = (1− x2,−xy,−xz).

The integral curves are great arcs connecting (−1, 0, 0) to (1, 0, 0). To
get their parametrized forms, we need to solve the equation

x′ = 1− x2, y′ = −xy, z′ = −xz

with the boundary condition that x(t → −∞) = −1, x(t → ∞) = 1,
y(t → −∞) = y(t → ∞) = z(t → −∞) = z(t → ∞) = 0. The first
equation gives

x =
e2λt − 1

e2λt + 1

where λ can be taken to be any positive real constant (which just corre-
sponds to scale of time). We fix λ = 1. Subsituting to the second and
third equations, we get

y =
C1e

t

1 + e2t
, z =

C2e
t

1 + e2t
.

Since x2 + y2 + z2 = 1, we get C2
1 + C2

2 = 2. Hence the solutions are

(x, y, z) =

(
e2t − 1

e2t + 1
,
2et cos θ

1 + e2t
,
2et sin θ

1 + e2t

)
where θ is a real constant.



4. (RA)

Find a solution for the heat equation

∂

∂t
u(x, t)− ∂2

∂x2
u(x, t) = 0, (t > 0, 0 < x < 1),

with the initial condition u(x, 0) = A where A is a constant and the boundary
conditions u(0, t) = u(1, t) = 0, t > 0.

Solution: In view of the boundary conditions (Dirichlet), using linearity and
separation of variables, we can write a solution of the form

u(x, t) =

∞∑
n=1

Bn sin(nπx)e−n
2π2t.

The coefficients Bn can be computed using a Fourier decomposition of the
function f(x) = u(x, 0) given by the initial condition. A quick calculation
(Bn = 2

∫ 1
0 sin(nπx)f(x)dx) gives:

B2n = 0 B2n−1 =
4A

(2n− 1)π
, n = 1, 2, 3, · · ·

5. (AT)

(a) Show that a continuous map f : X → RPn factors through Sn → RPn if
and only if the induced map f∗ : H1(RPn;Z/2)→ H1(X,Z/2) is zero.

(b) Show that a continuous map f : X → CPn factors through S2n+1 → CPn
if and only if the induced map f∗ : H2(CPn;Z)→ H2(X,Z) is zero.

6. (CA) Let f be a meromorphic function on a contractible region U ⊂ C, and
let γ be a simple closed curve inside that region. Recall that the argument
principle for a meromorphic function says that the integral

1

2πi

∫
γ

f ′

f

is equal to the number of zeroes minus the number of poles of f inside γ.

(a) Prove Rouché’s Theorem. That is, assume (1) f and g are holomorphic
in U , (2) γ is a simple, smooth, closed curve in U , and (3) |f | > |g| on
γ. Then the number of zeroes of f + g inside γ is equal to the number
of zeroes of f inside γ. You may assume the Argument Principle.

(b) Show that for any n, the roots of the polynomial

n∑
i=0

zi

all have absolute value less than 2.



Solution: (a) Apply the argument principle to f + g. Take note that the
derivative of log(1 + g

f ) shows up. (b) Let f = zn and g be the summation of

zi from i = 0 to n− 1. Apply Rouché’s theorem, noting that zn has the same
number of roots as f + g (since they are polynomials of equal degree).



QUALIFYING EXAMINATION

Harvard University

Department of Mathematics

Wednesday September 3, 2014 (Day 2)

1. (AT)

(a) Let X and Y be compact, oriented manifolds of the same dimension n.
Define the degree of a continuous map f : X → Y .

(b) What are all possible degrees of continuous maps f : CP3 → CP3?

Solution: For the first part, the induced map f∗ : Hn(Y,Z) ∼= Z→ Hn(X,Z) ∼=
Z is multiplication by some integer d; this is the degree of f .

For the second part, note that H∗(CP3,Z) ∼= Z[ζ]/(ζ4) and that f∗ is a ring
homomorphism. If f∗(ζ) = mζ, then f∗(ζ3) = m3ζ3 and so the degree must
be a cube. To see that all cubes occur, just consider the map [X,Y, Z,W ] 7→
[Xm, Y m, Zm,Wm] for positive d = m3; take complex conjugates to exhibit
maps with negative degrees.

2. (A)

(a) Show that every finite extension of a finite field is simple (i.e., generated
by attaching a single element).

(b) Fix a prime p ≥ 2 and let Fp be the field of cardinality p. For any n ≥ 1,
show that any two fields of degree n over Fp are isomorphic as fields.

Solution: (a) If E/F is the field extension, then E× is cyclic. Taking a
generator x, we see that E = F (x). (b) Any field extension of degree n is a
splitting field for the polynomial Xpn −X, hence is unique.

3. (CA) Fix two positive real numbers a, b > 0. Calculate the value of the
integral ∫ ∞

−∞

cos(ax)− cos(bx)

x2
dx.

Solution: We compute the keyhole integral over a simple closed curve

C = Cr ∪ CR ∪ [−R,−r] ∪ [r,R],

where the closed intervals are on the y-axis of the complex plane. The curve
Cr is a semicircle in the upper half-plane of radius 0 < r < R, oriented so as
to agree with the positive orientation on the real axis. Likewise CR is on the
upper half-plane. We integrate the function

F (z) =
exp(iaz)− exp(ibz)

z2
.



In the interior of C, F has no singularities, so
∫
C F = 0. Along Cr, we can

use the power series expansion of exp to see that

exp(iaz)− exp(ibz)

z2
=

1− 1 + iaz − ibz + (iaz)2/2− (ibz)2/2 + . . .

z2
=
i(a− b)

z
+h(z)

for some holomorphic function h(z). So

lim
r→0

∫
Cr

F (z)dz = lim
r→0

∫
Cr

i(a− b)
z

dz + lim
r→0

∫
Cr

h(z)dz (1)

= lim
r→0

∫
Cr

i(a− b)
z

dz + lim
r→0

h(r)− h(−r) (2)

= lim
r→0

(a− b)
∫ 0

π

i

reit
ireitdt+ 0 (3)

= (a− b)(−i2)π (4)

= (a− b)π. (5)

On the other hand, we utilize the following estimate as R →∞: Since y > 0
and a > 0, eiaz = e−ayeix has a modulus less than 1. Likewise for eibz. This
means that on CR,

|exp(iaz)− exp(ibz)

z2
| ≤ 2

R2
.

Hence the integral
∫
CR

F (z)dz is bounded by 2π/R, which tends to zero as
R→∞. So we obtain that

0 = lim
r→0,R→∞

∫
C
F (z)dz (6)

= lim
r→0

∫
Cr

Fdz + lim
R→0

∫
CR

Fdz +

∫ +∞

−∞
Fdz (7)

= π(a− b) +

∫ +∞

−∞
F (z)dz. (8)

Looking at the real part of this equality we arrive at the conclusion that

π(b− a) = Real

∫ +∞

−∞
F (z)dz

which is what we seek.

4. (AG) Let C ⊂ P2 be the smooth plane curve of degree d > 1 defined by the
homogeneous polynomial F (X,Y, Z) = 0

(a) If p ∈ C, find the homogeneous linear equation of the tangent line TpC ⊂
P2 to C at p.

(b) Let P2∗ be the dual projective plane, whose points correspond to lines in
P2. Show that the Gauss map g : C → P2∗ sending each point p ∈ C to
its tangent line TpC ∈ P2∗ is a regular map.



(c) Let C∗ ⊂ P2∗ be the dual curve of C; that is, the image of the Gauss
map. Assuming that the Gauss map is birational onto its image, what is
the degree of C∗ ⊂ P2∗?

Solution: For the first part, the tangent line TpC is given by the equation

∂F

∂X
(p) ·X +

∂F

∂Y
(p) · Y +

∂F

∂Z
(p) · Z = 0.

For the second, the Gauss map is given by

g : p 7→
[
∂F

∂X
(p),

∂F

∂Y
(p),

∂F

∂Z
(p)

]
.

Since these have no common zeroes, the map is regular. For the third, since
the partial derivatives of F are homogeneous of degree d− 1, the preimage of
a general line in P2∗—that is, the zero locus of a general linear combination—
will consist of d(d − 1) points (since the partials have no common zeroes,
by Bertini a general linear combination will have only simple zeroes); thus
deg(C∗) = d(d− 1).

5. (DG) Let U the be upper half plane U = {(x, y) ∈ R2|y > 0} and introduce
the Poincaré metric

g = y−2(dx⊗ dx+ dy ⊗ dy).

Write the geodesic equations.

Solution: A direct calculation gives x′′ − 2
yx
′y′ = y′′ − 1

y [(x′)2 + 3(y′)2] = 0.

6. (RA)

(a) Define what is meant by an equicontinuous sequence of functions on the
closed interval [−1, 1] ⊂ R.

(b) Prove the Arzela-Ascoli theorem: that if {fn}n=1,2,... is a bounded, equicon-
tinuous sequence of functions on [−1, 1], then there exists a continuous
function f on [−1, 1] and an infinite subsequence Λ ⊂ {1, 2, . . . } such
that

lim
n∈Λ and n→∞

(
sup

t∈[−1,1]
|fn(t)− f(t)|

)
= 0

.

Solution: First, a sequence {fn} of functions is equicontinuous if ∀ε > 0 there
exists a δ > 0 such that if |t− t′| < δ then |fn(t)− fn(t′)| < ε for all n.

For the second part, here is a four-step proof:

1. We first show there exists a subsequence Λ ⊂ N such that ∀r ∈ Q∩[−1, 1],
the sequence {fn(r)}n∈Λ converges. We do this by first ordering Q ∩
[−1, 1], choosing a subsequence Λ1 ⊂ N such that {fn(r1)}n∈Λ1 converges



(we can do this because {fn} is bounded); then choosing a subsequence
Λ2 ⊂ Λ1 of that such that {fn(r2)}n∈Λ2 converges, and so on; we can do
this such that if nk is the smallest integer in Λk then nk /∈ Λk+1. We take
Λ = {n1, n2, n3, . . . }; since all but finitely many elements of Λ are in Λk,
it follows that {fn(rk)}n∈Λ converges. Denote the limit limn∈Λ fn(rk) by
f(rk).

2. Second, we claim that the function f on Q ∩ [−1, 1] defined in the first
part satisfies the condition that ∀ε > 0 there exists a δ > 0 such that for
r, r′ ∈ Q ∩ [−1, 1], |r − r′| < δ =⇒ |f(r)− f(r′)| < ε. This follows from
the “up, over and down” argument: we have

|f(r)− f(r′)| ≤ |f(r)− fn(r)|+ |fn(r)− fn(r′)|+ |fn(r′)− f(r′)|

and we can bound each term on the right by ε/3 (the middle term by
equicontinuity). It follows that for any t ∈ [−1, 1] and any sequence
{q1, q2, . . . } ⊂ Q ∩ [−1, 1] converging to t, the sequence f(qn) is Cauchy;
denote the limit by f(t).

3. We claim that the function defined in the second part is continuous.
This is again an up, over and down argument: if t, t′ ∈ [−1, 1] and
r, r′ ∈ Q ∩ [−1, 1], we have

|f(t)− f(t′)| ≤ |f(t)− f(r)|+ |f(r)− f(r′)|+ |f(r′)− f(t′)|

and again if we require t, t′, r, r′ to all lie in a sufficiently small interval
we can bound each term by ε/3.

4. We repeat the argument one more time. Choose N large, and con-
sider the rational numbers r ∈ Q ∩ [−1, 1] with denominator N ; that
is, {k/N}k=−N,−N+1,...,N . For any t ∈ [−1, 1], we choose r = k/N close
to t and write

|fn(t)− f(t)| ≤ |fn(t)− fn(r)|+ |fn(r)− f(r)|+ |f(r)− f(t)|

and once more we can bound each term by ε/3 by choosing n sufficiently
large and r sufficiently close to t.
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1. (DG) The symplectic group Sp(2n,R) is defined as the subgroup of Gl(2n,R)
that preserves the matrix

Ω =

(
0 In
−In 0

)
where In is the n × n identify matrix. That is, it is composed of elements of
Gl(2n,R) that satisfy the relation

MTΩM = Ω.

(a) Show that every symplectic matrix is invertible with inverse M−1 =
Ω−1MTΩ.

(b) Show that the square of the determinant of a symplectic metric is 1. (In
fact, the determinant of a symplectic matrix is always 1, but you don’t
need to show this.)

(c) Compute the dimension of the symplectic group.

Solution: (a) Direct consequence from the definition since we can write
(Ω−1MTΩ)M = I2n (b) Take the determinant on both side of the defining
equation MTΩM = Ω and use the fact that detMT = detM . (c) Using
the exponential map, describe the tangent space at the identity to be defined
my the matrices m such that mTΩ + Ωm = 0 which can also be written as

ΩmTΩ = m. Writing m =

(
a b
c d

)
in terms of n×n blocks (a, b, c and d) and

deduce the condition that these blocks have to satisfy (d = −aT , bT = b, cT =
c) to have ΩmTΩ = m. It follows that the dimension is n(2n+ 1).

2. (RA) Suppose that σ is a positive number and f is a non-negative function
on R such that∫

R
f(x)dx = 1;

∫
R
xf(x)dx = 0 and

∫
R
x2f(x)dx = σ2.

Let P denote the probability measure on R with density function f .

(a) Supposing that ρ is a positive number, give a non-trivial upper bound in
terms of σ for the probability as measured by P of the subset [ρ,∞).



(b) Given a positive integer N , let {X1, . . . , XN} denote N independent ran-
dom variables on R, each with the same probability measure P. Let SN
be the random variable on RN given by

SN =
1

N

N∑
i=1

Xi

What are the mean and standard deviation of SN?

(c) Let {X1, X2, . . . , XN} be independent random variables on R, each with
the same probability measure P, and let PN (x) denote the function on
R given by the probability that

1√
N

N∑
k=1

Xk < x.

Given x ∈ R, what is the limit as N →∞ of the sequence {PN (x)}?

Solution: For the first part, the probability assigned to the interval is
∫∞
ρ f(x)dx.

An upper bound is derived by noting that the probability is no greater than∫∞
ρ

x2

ρ2
f(x)dx and this in turn is at most σ2

ρ2
This is Chebyshevs inequality.

For the second part, the mean is 0 and the standard deviation is 1√
N
σ.

Finally, the central limit theorem says that

lim
N→∞

PN (x) =

∫ x

−∞

1

σ
√

2π
e−x

2/2σ2
.

3. (AG) Let X be the blow-up of P2 at a point.

(a) Show that the surfaces P2, P1 × P1 and X are all birational.

(b) Prove that no two of the surfaces P2, P1 × P1 and X are isomorphic.

Solution: For the first part, we can simply observe that all three surfaces
contain the affine plane A2 as a Zariski open subset.

For the second, there are many invariants that we can use to distinguish P2

from P1 × P1: the topological Euler characteristic; the self-intersection of the
canonical bundle, or the rank of the Picard group all work. To see thatX is not
isomorphic to either, note that X contains a curve of negative self-intersection
(the exceptional divisor), while P2 and P1 × P1 do not.

4. (AT) Suppose that G is a finite group whose abelianization is trivial. Suppose
also that G acts freely on S3. Compute the homology groups (with integer
coefficients) of the orbit space M = S3/G.

Solution: Note that M is a smooth manifold, and that π1M = G. By
Poincare’s theorem H1S

3/G = 0, as is H1(S3/G;A) = hom(π1M,A) for



any abelian group A. This implies that M is orientable. It then follows
from Poincare duality that H2(M ;A) = 0 for any abelian group A and that
H3(M ;A) = A.

5. (CA) Recall that a function u : R2 → R is called harmonic if ∆u := ∂2
xu +

∂2
yu = 0. Prove the following statements using harmonic conjugates and stan-

dard complex analysis.

(a) Show that the average value of a harmonic function along a circle is equal
to the value of the harmonic function at the center of the circle.

(b) Show that the maximum value of a harmonic function on a closed disk
occurs only on the boundary, unless u is constant.

Solution: Cauchy Integral Formula, and maximum principle. In detail:

(a) Let v be the harmonic conjugate for u so u+ iv = f is an analytic function
on R2. By Cauchy’s integral formula,

f(a) =
1

2πi

∫
γ

f(z)

z − a
dz

for any point a and any closed, simple curve surrounding a. Taking γ to be a
circle of radius R centered at a, and parametrizing z(t) = Reit + a, we thus
have

u(a) + iv(a) =
1

2πi

∫
γ

u+ iv

Reit
iReitdt.

Equating real and imaginary parts, we obtain

u(a) =
1

2πR

∫
γ
udt.

(b) If u is harmonic, let v be a harmonic conjugate so f = u+iv is holomorphic.
By the maximum modulus principle, |ef | must obtain a maximum only along
the boundary (unless f is constant). But |ef | = |eu| = eu, and since exp is
strictly monotone and continuous, eu obtains a maximum if and only if u does.

6. (A) Let G be a finite group.

(a) Let V be any C-representation of G. Show that V admits a Hermitian,
G-invariant inner product.

(b) Let N be a C[G]-module which is finite-dimensional over C, and let
M ⊂ N a submodule. Show that the inclusion splits.

(c) Consider the action of S3 on C3 given by permuting the axes. Decompose
C3 into irreducible S3-representations.



Solution: (a) Put an arbitrary inner product 〈, 〉 on V , then define

(v, w) :=
1

|G|
∑
g∈G
〈gv, gw〉.

(b) Take the orthogonal complement to M under a G-invariant inner product.
(c) Clearly the diagonal z1 = z2 = z3 is an invariant subspace. By using the
methods above (or by writing an invariant linear equation) we deduce that
an orthogonal complement is given by the plane z1 + z2 + z3 = 0. This two-
dimensional representation has no subrepresentations, so must be the unique
2-dimensional irreducible representation.


