Questions in AG for the qualifying exam, Spring 2013 (draft version by Suh).
P1. Prove that the following complex algebraic varieties are pairwise nonisomorphic.

(a) X1 = SpecClz,y]/(y* — 2), Xo = SpecClx,y]/(y*> — 2* — x) and X3 = SpecC[z,y]/(y? —

23— 2?).

(b) X1 = SpecC[z,y]/(zy* + 2°y) and Xz = SpecC[z,y, 2]/ (zy, y2, zz).
(¢) X1 =P x P§, Xo = P2 and X3 = the blowing up of X5 at the point [0: 0: 1].
P2. Let f and g be irreducible homogeneous polynomials in S = C[Xy, X1, X2, X3] of degrees 2

and 3, respectively. For parts (a) and (b), combinatorial polynomials (such as (g) =T(T-1)/2)
are acceptable in the final answer.

(a) Compute the Hilbert polynomial of X = Proj(S/(g)) embedded in P = P2 = Proj(.S).
(b) Compute the Hilbert polynomial of Y = Proj(S/(f,g)) embedded in P.

(¢) Assuming in addition that Y is nonsingular, use your answer for part (b) to compute its

geometric genus
dime T(Y, Q5 ).

P3. Let Xy be the affine plane curve defined by the equation

y’ -3y =2

over the complex numbers, and let X be the projective smooth model of Xj.
(a) Show that Xy is nonsingular.

(b) Find all a € C for which the polynomial P,(y) = y> — 3y — a has repeated roots. For each
such a, factor the polynomial P,(y).

(c) Let 7 : X — PL be the unique extension of the coordinate map = : Xo — Al. Describe
the ramification divisor of m and compute its degree.

(d) Compute the genus of X by applying Hurwitz’s theorem to 7 : X — P!,



A solution.

Al.

(a) Only X2 among the three is nonsingular. The normalization map is a set-theoretic bijection
in the case of X7, but not in the case of X3.

(b) Since X; embeds into the affine plane, the Zariski cotangent space at every C-valued point of
X1 has dimension at most 2. At (0,0,0) € X9, the Zariski cotangent space has dimension 3.

(c) By Bézout’s theorem, any two distinct irreducible curves on Xs intersect; this is not the
case of X1, nor of X3. The exceptional divisor on X3 has self-intersection —1, while no prime
divisor on X has strictly negative self-intersection (one can translate any prime divisor into a
different prime divisor, using the action of PG Ly x PG L9 by fractional linear transformations).

A2

(a) One has a short exact sequence of sheaves on P:
0— Op(-3) — Op — Ox — 0,

hence the Hilbert polynomial is

T+3 T+3-3 3 3
i (TE) (T i

(b) By the assumptions on f and g, they are relatively prime, and we have an exact sequence
0— OP(—5) — Op(—?) D OP(—3) — Op — Oy — 0,

hence the Hilbert polynomial is

=1 3)-(73)- () (7)o

(¢) By Serre duality it is equal to the arithmetic genus, or

1=x(Oy)=1-hy(0) =4.

(a) By the Jacobian criterion of smoothness, at a singular point we have
v —3y=2° 0=>52" and 3y>—3=0,
which has no solution.

(b) We have P!(y) = 3(y? — 1), and

)
Puly) = 3Faly) =2y —a,
so P,(y) is separable exactly when a # +2. When a = 2, P,(y) = (y + 1)?(y — 2) and when
a=-2 Pu(y)=(y— 1’y +2)



(c) For z € AY(C), the fiber 771(x) consists of three distinct points when z° # +2. When
x® = 42, the fiber consists of two points, one point P, with multiplicity two and the other
with multiplicity one.

Since 3 is prime to 5, 7~!(c0) consists of one point Ps, with multiplicity three.

In this notation, the ramification divisor is

R= Y 1-[P]+2[Px],
z5=42

and has degree 12.
(d) Let g be the genus of X, and Hurwitz formula reads
20—2=3-(2-0—-2)+12,

so g = 4.



PROPOSED QUESTIONS FOR QUALIFYING EXAMINATION IN

(1)

ALGEBRAIC TOPOLOGY (2013 SPRING)

Let H be the space of quaternions, and denote by S the unit sphere inside
H. The quaternion group G = {£1, &4, +j, £k} acts on H by left multipli-
cation, and the action preserves the unit sphere S3. Let X be the quotient
space S /G. Compute its fundamental group m;(X) and its first homology
group Hy(X,Z).

(H is spanned by four independent unit vectors 1,4, j, k as a real normed
vector space. The multiplication between two elements of H is bilinear
and is determined by the rules i2 = j2 = k? = ijk = —1, and 1 is the
multiplicative identity.)

Use Z to denote the subset of R? that is given using standard polar coor-
dinates (r,6) by the equation r = cos?(20). The set Z is depicted in Figure
1.

FIGURE 1. The set Z.

(a) Compute the fundamental group of Z.

(b) Let D denote the closed unit disk in R? centered at the origin. The
boundary of D is the unit circle, this denoted here by dD. Param-
etrize 9D by the angle ¢ € [0,27) and let f denote the map from
the boundary of D to Z that sends the angle ¢ to the point in Z
with polar coordinates (r = cos?(2¢),0 = ¢). Let X denote the space
that is obtained from the disjoint union of D and Z by identifying
¢ € 0D with f(¢) € Z. Give a set of generators and relations for the
fundamental group of X.
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(3) Let K C R? denote a knot, this being a compact, connected, dimension 1
submanifold.
(a) Compute the homology of the complement in R? of any given knot K.
(b) Figure 2 shows a picture of the trefoil knot.

FIGURE 2. The trefoil knot.

Sketch on this picture a curve or curves in the complement of K that
generate(s) the first homology of R3 — K.

(c) A Seifert surface for a knot in R? is a connected, embedded surface
with boundary, with the knot being the boundary (we do not impose
orientability here). By way of an example, view the unit circle in the
xy plane as a knot in R3. This is called the unknot. The unit disk in
the xy plane is a Seifert surface for the unknot.

(i) Compute the second homology of the complement in R3 of any
given Seifert surface for the unknot.

(ii) Sketch a Seifert surface for the unknot whose complement is not
simply connected.
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PROPOSED ANSWER

(1) Since G is a finite group and it acts on S? freely, the quotient map S? — X
is a covering map. S? is simply connected and hence it is the universal
cover of X, where G acts as Deck transformations. Thus m (X) = G.

The first homology group is the abelianization of the fundamental group.
Thus
Hy(X) = m(X)/[m1(X), m (X))
=G/[G,G] = G/{+£1}
=Zo ® Zs.
The fundamental group is Z * Z x Z * 7Z.

The fundamental group is generated by a, b, ¢, d with abed = 1.

2) (a)
b)
a) Hy=17Z, Hy =7, Hy = Z, H3 = 0 by Mayer Vietoris sequence.
b)
)

(
(
(3) (
(
(c

A circle surrounding a segment of the knot.
(i) Hy =Z.
(ii) A Mobius strip.



Exercise 1. The following questions are independent.
a) For any a € (—1,1), compute
2
/ dt
o l+4acost

*° dx

/0 P41
Exercise 2. Is there a conformal map between the following domains? If the answer is yes, give such a
conformal map. If it is no, prove it.
a) FromD={z€C:|z| <1} toH={z€ C:Im(z) > 0}.
b) From the intersection of the open disks D((0,0),3) and D((0,3),2) to C.
¢) From H\(0,¢] to H.
d) From D to C\(—o0, —1].

b) For any p > 1, compute

Exercise 3. The following questions are independent.

a) Describe all harmonic functions on the plane R? that are bounded from above.

b) Let h: H= {z € C:Im(z) > 0} — C be holomorphic. Assume that |h(z)| <1 for any z € H and 7 is a
zero of h of order m > 1. Prove that, for any z € H,

.m
zZ—1

zZ+1

h(z)] <




Solution of exercise 1.
a) The case a = 0 is obvious, we assume a # 0 from now. We have

/2“ a / dz 1 / 2dz 1 / 2dz
o ldacost Jriz(1+2(z+1)) iJraz2+2z24a  iJpalz—z)(z—2)

where z; = =i=vl=a® ;1_“2, 29 = —kEVIza? ;1_“2 The point 27 is outside the closed unit disk while the point 29 is
inside the open unit disk; thus the residue theorem leads to

/2” dt o R 2 o
——— = 27Res 29| = ———.
o l-+acost a(z —21)(z — 22)’ 2 V1—a2

b) For z = re?, r > 0, —1 < § < 7, let log z = logr + i The function is the restriction to (0,+00) of

1
THar
fz)= m, which is analytic in C — (—o00,0]. For 0 < € < R < oo we consider the positively

oriented contour I" = I'(e, R) made of the following four arcs:

e the closed interval [e, R],

e the arc of circle of radius R and angle from 0 to %.

;27
32T
P

e the interval joining Re'% and ee

e the arc of circle of radius € and angle from % to 0.

For R > 1 there is only one 0 of f inside the contour, z, = ¢'7. The residue at z, can be computed to be

-
e'r

Res(f,zp) = — P

The residue theorem applied to I" for R — oo and € — 0 allows to conclude that

/°° de. w1
o P+1 psin(n/p)

Solution of exercise 2.
a) Yes, i112.
b) No. The inverse map would be a conformal map from the plane to a bounded set. It would therefore
constant, by Liouville’s theorem. This is absurd.

¢) Yes, V22 + 1. To see this, z — 22 sends the domain to C/[—1, 00). Therefore z? + 1 sends the domain to
C/]0, 00). Taking the square root maps it to the upper half plane.

d) Yes, it can be deduced from questions a) and ¢), going from the disk to the upper half plane and then

the complement of a ray. It is the Koebe function ﬁ

Solution of exercise 3.
a) Let v be the harmonic conjugate of w. Then the function

H(z) = exp(u(z,y) +wv(x,y)), 2 =z + 1y,



is entire and bounded in the complex plane. By Liouville’s theorem it is constant, which implies that w is
constant.

b) The map @ : z zifi is conformal from D to H. Let f(z) = h(®(2)).

The function g(z) = f(z)/2™ is analytic on D and |g(z)| < 1 on dD. The maximum principle implies that

lg(z)| <1 on D and therefore |f(z)| < |z|™ for any z in . This implies the result.




DIFFERENTIAL GEOMETRY (QUALIFYING EXAMS, SPRING 2013)

(1) The Heisenberg group is the subgroup of SI(3,R) composed of the
3 x 3, upper triangular matrices with 1 on the diagonal, this being
the set of matrices of the form:

1 =z =z
0 1 y|, with (z,y,2)€R>
0 0 1

This group is observably diffeomorphic to R3.

(a) Compute the Lie algebra of the Heisenburg group.

(b) Exhibit a left-invariant Riemannian metric on the Heisenberg
group.

(2) View R? x C as the product complex line bundle over R? and let 6
denote the connection on this line bundle whose covariant derivative
acts on a given section s as ds with d being the exterior derivative.
Let A denote the connection

i
0o + m(wdy — ydx).

(a) Compute as a function of r € (0, 00) the linear map from C to
C that is obtained by using A to parallel transport a given non-
zero vector in C in the clockwise direction on the circle where
22 + 4% = r? from the point (r,0) to itself.

(b) Give a formula for the curvature 2-form of the connection A.

(3) Use (t, 2,9, 2) to denote the Euclidean coordinates for R, Let ¢
a(t) denote a strictly positive function on R. A Riemannian metric
on R* is given by the quadratic form:

g:dt®dt+a(t)2(dm®da;+dy®dy+dz®dz>.

Compute the components of the Riemann curvature tensor of g using
the orthonormal basis {dt, adx, ady, adz} for T*R%.



SOLUTIONS

Question 1. We denote an element of the Heisenberg group as

1 =z =z
M=10 1y
0 0 1

(1.a). To identify the generators of the Lie algebra, we compute the left
Maurer-Cartan one-form:

Op = M~ YdM = dzX + dyY + (dz — zdy)Z,

where
010 0 00 0 01
X=1000}), Y=10 01|, Z={(0 0 0],
0 00 0 00 0 00

are the generators of the Lie algebra. The Lie bracket is given by the com-
mutators of these matrices:

(X,Z]=[Y,Z] =0, [X,Y]=2Z.

(1.b). Denoting the transpose of a matrix U as U' and its trace as Tr U ,
the following is trivially a left-invariant Riemannian metric:

gr, = Te(0y, - 0%) = da® + dy? + (dz — zdy)*.

QUESTION 2
(2.a). The parametric equation of the curve is
v:[0,27] = R%:t — ~ = (rcos t,—rsin t).
Pulling back the connection to the curve gives
irldt
1472

To find the parallel transport of sqg € C along the curve 7, we solve the first
order differential equation with initial condition s(0) = so:

Vi, s (t) =0,
where 7 is dv;/dt and the covariant derivative on the curve is computed
with respect to the connection one-form ~; A:
d ir2dt
dt  1+r%
With the initial condition s(0) = sp, the solution is
) ( tr? )
s(t) =spexp | —=1 ).
0PI
The parallel transport of sq is then given by evaluating s(¢) at the end point
t = 2m. This defines the following linear map:

YA =00 —

Vi, =

2

2nr
C—>C:50—~ <7)
S0 Sp exXp 1—|—7’2Z



(2.b). The curvature of the connection A is :

9
sdz A dy.

(3

QUESTION 3

We use the following notation:
da d2a
0 1 2 3 . ..
e’ =dt, e =adr, e°=ad e’ =adz, 4=—, 4= —=.
) ) y? ) dt M dtQ
The metric can then be rewritten as

3
g= Z e ®em.
m=0
We can compute the connection from the Cartan’s structure equations with
zero torsion: X
dem+Zwmn/\e" =0, m=0,1,2,3.
n=0
Since the connection is compatible with the metric, w™,, has to be antisym-

metric in m and n. we can then uniquely determine its components. A
direct calculation gives:

de® =0, de' = 2 e0 Nei=1,2,3,

a
from which we get:
0 —el —e?2 —¢3
L_afe 0o 0 0
Talée? 0 0 0
e 0 0 0
The Riemann curvature is then:
0 —ai eONel —ad P ANe? —ad P Ael
1 |ade®Ael 0 —aZ2 el ne?2 —a? el ne?
=d = — .. . i
R(w) wHwAw a2 |ad e ne?  a%el ne? 0 —a2 el ned

ai O Ned  aZel Ned a? e? Ned 0



1. Suppose f;,j =1,2,... and f are real functions on [0, 1]. Define f; — f in measure if and only if for any
€ > 0 we have

lim jifo € [0,1] 5 /(@) — f(@)] > ¢} = 0
j—o0
where p is the Lebesgue measure on [0, 1]. In this problems, all functions are assumed to be in L[0, 1].

(a) Suppose that f; — f in measure. Does it implies that

tin [ 17,(0)  f(@)lax =0,

Jj—o0
Prove it or give a counterexample.

(b) Suppose that f; — f in measure. Does this imply that f;(z) — f(z) almost everywhere in [0,1]?
Prove it or give a counter example.

(c) Suppose that f;(z) — f(x) almost everywhere in [0, 1]. Does it implies that f; — f in measure?
Prove it or give a counter example.

(a) For any bounded positive function f define

a0 = [ s s, 5= ([ swas)ioe( [ o).

There are three possibilities: (i) A(f) > B(f) for all bounded positive functions, (ii) B(f) > A(f) for
all bounded positive functions, and (iii) A(f) > B(f) for some functions while B(f) > A(f) for some
functions. Decide which possibility is correct and prove your answer. If you use any inequality, state
all assumptions of the inequality precisely and clearly.

(b) Let f denote the Fourier transform of the function f on R. Suppose that f € C* (R) and

1F Oz <o MEFTF @@ < 8
for some € > 0. Find a bound on || f]|ze~ (R) in terms of o, 5 and e.

3. Assume that X7, Xs,... are independent random variables uniformly distributed on [0, 1]. Let
Yy = ninf{X;,1 <i <n}. Prove that Y (™ converges weakly to an exponential random variable, i.e. for
any continuous bounded function f : Rt — R,

n— 00

E(f(wn))) = [, S



Solutions:
la. no. let f =0 and
fi(x) =3, 0 <2 <1/j; =0 otherwise

1b. no. let f =0 and f; are the j-th Haar functions.
lc. yes. Fix any € > 0. Let

Ey ={z €[0,1] : [fj(x) — f(x)| > €}, Fj = Upx; Ej
By changing « on a set of measure zero, we have f;(x) — f(z) for all z. Thus

J]—00

Hence p(F;) — 0.
Alternatively, WLOG, we assume that f = 0. Let g; = min(1, |f;|). Then g; — 0. Thus

1
w(E) <= [ glade o
0

2a. Since the function x — zlogx is convex, by Jensen inequality, we have A(f) > B(f).
2b. From the Fourier inversion formula and Schwarz inequality,

f@) <] [ feoemag < [1FOPQ+Ie) e [a+leh g <0l + 57
for some constant C'.

3. Up to a permutation, we can assume that 1 < x5... < x,. In this case, Y™ = nz,. Thus

1 1 1
Ef(Yy™) :n!/ dxl/ de.../ dz,, f(nxy)
0 T Tp—1

1 1 1
:n!/ dxl/ dxg.../ dzp—1(1 — zp—1) f(nx1)
0 T Tp—2

= n/ dzy f(nz))(1 —21)" ' = /n de f(z)(1 —2/n)" " — f(u)e "du.
0 0 R+

where we have used dominated convergence in the last step.



