QUALIFYING EXAMINATION
Harvard University
Department of Mathematics
Tuesday, March 12 (Day 1)

1. Let X be a compact n-dimensional differentiable manifold, and ¥ C X a closed sub-
manifold of dimension m. Show that the Euler characteristic x(X \ Y) of the complement
of Y in X is given by

X(X\Y) = x(X)+ (=1)" "™ Ix(Y).

Does the same result hold if we do not assume that X is compact, but only that the Euler
characteristics of X and Y are finite?

2. Prove that the infinite sum
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diverges.

3. Let h(x) be a C*> function on the real line R. Find a C* function u(z,y) on an open
subset of R? containing the z-axis such that
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and u(z,0) = h(x).

4. a) Let K be a field, and let L = K(«) be a finite Galois extension of K. Assume that
the Galois group of L over K is cyclic, generated by an automorphism sending « to av+ 1.
Prove that K has characteristic p > 0 and that o — a € K.

b) Conversely, prove that if K is of characteristic p, then every Galois extension L/K
of degree p arises in this way. (Hint: show that there exists § € L with trace 1, and
construct o out of the various conjugates of 3.)



5. For small positive o, compute

/°° x®dr
0 T2H+x+1°

For what values of o € R does the integral actually converge?

6. Let M € M,(C) be a complex n X n matrix such that M is similar to its complex
conjugate M; i.e., there exists ¢ € GL,(C) such that M = gMg~!. Prove that M is
similar to a real matrix My € M,,(R).
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1. Prove the Brouwer fixed point theorem: that any continuous map from the closed n-disc
D™ C R™ to itself has a fixed point.

2. Find a harmonic function f on the right half-plane {z € C | Re z > 0} satisfying

. .y _J1 ity>0
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3. Let n be any integer. Show that any odd prime p dividing n? + 1 is congruent to 1
(mod 4).

4. Let V be a vector space of dimension n over a finite field with ¢ elements.
a) Find the number of one-dimensional subspaces of V.
b) For any k: 1 < k <n — 1, find the number of k-dimensional subspaces of V.

5. Let K be a field of characteristic 0. Let PV be the projective space of homogeneous
polynomials F(X,Y, Z) of degree d modulo scalars (N = d(d+ 3)/2). Let W C P¥ be the
subset of polynomials F' of the form

F(X,Y,2) = [[Li(X.Y.2)

for some collection of linear forms Lq,..., Lg.
a. Show that W is a closed subvariety of PV .
b. What is the dimension of W?
c. Find the degree of W in case d = 2 and in case d = 3.



6. a. Suppose that M — R"T! is an embedding of an n-dimensional Riemannian manifold
(i.e., M is a hypersurface). Define the second fundamental form of M.

b. Show that if M C R™*! is a compact hypersurface, its second fundamental form
is positive definite (or negative definite, depending on your choice of normal vector) at at
least one point of M.
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1. In R3, let S, L and M be the circle and lines

S={(z,y,2): 2> +y*=1; 2 =0}
L = {(z,y,2) :x =y =0}

1
M = {(m,y,z):xzi; y =0}

respectively.
a. Compute the homology groups of the complement R3 \ (S U L).
b. Compute the homology groups of the complement R3\ (S UL U M).

2. Let L, M, N C P? be any three pairwise disjoint lines in complex projective threespace.
Show that there is a unique quadric surface ) C IP’% containing all three.

3. Let G be a compact Lie group, and let p : G — GL(V') be a representation of G on a
finite-dimensional R-vector space V.

a) Define the dual representation p* : G — GL(V*) of V.

b) Show that the two representations V' and V* of G are isomorphic.

c) Consider the action of SO(n) on the unit sphere S»~1 C R", and the corresponding
representation of SO(n) on the vector space V of C* R-valued functions on S™~!. Show
that each nonzero irreducible SO(n)-subrepresentation W C V' of V has a nonzero vector
fixed by SO(n — 1), where we view SO(n — 1) as the subgroup of SO(n) fixing the vector
0,...,0,1).

4. Show that if K is a finite extension field of QQ, and A is the integral closure of Z in
K, then A is a free Z-module of rank [K : Q] (the degree of the field extension). (Hint:
sandwich A between two free Z-modules of the same rank.)



5. Let n be a nonnegative integer. Show that

=<¢ -1 ifn=1 (mod3) .

) 1 ifn=0 (mod3)
0 ifn=2 (mod3)

> -,

0<k<l
k+l=n

(Hint: Use a generating function.)

6. Suppose K is integrable on R™ and for ¢ > 0 define
K.(z) = e "K(2).
€
Suppose that [,, K = 1.

a. Show that [, K =1and that [ [KJ]—0ase—0.
b. Suppose f € LP(R™) and for € > 0 let f. € LP(R™) be the convolution

@ = [ K-y,

Show that for 1 < p < co we have
|\fe—fll, = 0ase—0.

c. Conclude that for 1 < p < oo the space of smooth compactly supported functions on
R™ is dense in LP(R™).



Extra problems: Let me know if you think these should replace any of the ones above,
either for balance or just by preference.

1. Suppose that M — RY is an embedding of an n-dimensional manifold into N-
dimensional Euclidean space. Endow M with the induced Riemannian metric. Let vy :
(—1,1) — M be a curve in M and 7 : (—1,1) — R¥ be given by composition with the
embedding. Assume that ||Cfi—j | = 1. Prove that v is a geodesic iff

&y
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is normal to M at v(t) for all t.

2. Let A be a commutative Noetherian ring. Prove the following statements and explain
their geometric meaning (even if you do not prove all the statements below, you may use
any statement in proving a subsequent one):

a) A has only finitely many minimal prime ideals {px | k = 1,...,n}, and every prime
ideal of A contains one of the py.

b) Ny—; Pk is the set of nilpotent elements of A.

c¢) If A is reduced (i.e., its only nilpotent element is 0), then |J;_, px is the set of
zero-divisors of A.

4. Let A be the n x n matrix

0 1 0 0
0 0 1 0
0 0 o ... 1
1/n 1/n 1/n ... 1/n

Prove that as k — oo, A* tends to a projection operator P onto a one-dimensional sub-
space. Find the kernel and image of P.



