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CHAPTER 8
REAL FUNCTIONS OF SEVERAL REAL VARIABLES

OR FUNCTIONS FROM AN INNER PRODUCT SPACE TO IR

Your first experiences with calculus concerned functions from IR (or
part of R) to IR, often called real functions of a real variable. Now we
want to consider, for example, real functions of two real variables. Such
functions abound 1n real 1ife. The formula, area = length x width, for the
area of a rectangle leads to a function of one real variable if, say, the

width of the rectanzle is held constant while the length varies, or if the

lenzth and width vary simultaneously in a dependent manner like 4= /1 +wl.
But we may wish to study the situation when the length and width vary indepen-
dently. Then we shall be concerned with the function

<X, ¥y> b xy
from (0,%) x (0,%) toR. Of course this is a very simple function, so it
is not likely that we shall learn very much about it using a general theory that
we couldn't learn more directly. But one need not go beyond polynomial functions
to find questions thlat would be hard to answer without using the concepts of

3

caleulus. For example, what is the minimum value of x” + y2 -X -2y +xy

considering only positive values of x and y?

In the study of functions of one variable, graphs provide valuable insights.
For functions of two variables graphs are again valuable. With some difficulty
we can make the graph of a function from m2 to IR. It will be a surface
in three-dimensional space. If we are unwilling to make the three-dimensional
model, we can visualize it or make a perspective drawing of it on paper. The
geometric problem of finding a line tangent to a curve now becomes the problem
of finding a plane tangent to a surface. Either of these problems is the
analytic problem of finding a first degree approximation to a function. The

geomotric and analytic ways of looking at a problem often produce quite different
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insights, so we want to be flexible in choosing our point of view. Hence we
shall often rezard a function from ]R2 to R as a function from a plane or
two-dimensional inner product space to R.

We cannot draw graphs of functions of three or more variables (because we
would need a space of dimension four, at least). Nevertheless, the geometric
point of view remains useful, so we shall often think of a function from b
to R as being defined on an n-dimensional inner product space. - Of course,
geometrical ideas in higher dimension are really only analogies. The ultimate
test of our ideas must remain in the domain of analysis (ie., statements about

the real numbers).

8.1 Foundations.

Although we shall not attempt to prove all the basic theorems concerning
continuous functions, convergence, etc., it is important to get some intuitive
feeling for the ideas that underlie such notions. In this whole chapter we
shall deal with inner product spaces of finite dimension. Finite dimension
is the cruclal point herej; with but few exceptions everything could be done
without reference to an inner product. It is also fortunate that a serviceable
intultion for the concepts can be gained by studying examples in dimensions
two and three.

We begin by defining some useful properties of subsets of a space.
8.1.1 Definition. Let V be an inner product spzce, x € V, and P >0.
the gpen ball of radius P about x 1is the set

{vev: “v-x'”<P }e
The glosed ball of radius o about x is the set
{vev: Mv-x"g() }.
The term ball is very appropriate when V is three-dimensional, since

then the sets are what we ordinarily think of as balls. In dimension two

the word disk is commonly used in place of ball. In dimension one, the set
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is a segment or an interval, but one does not ordinarily describe an interval
as having a radius.

The difference between an open ball and a closed ball is simply that the
closed ball includes the "skin" while the open ball does not.

Note that the words open and closed have meanings that g\eneralize their
meanings in connections with intervals. The open ball of radius p about x
in R 1is the open interval (x - P x+ P ) and the closed ball is the
closed interval [x - pPsxtp ]. We shall extend the meaning of these words
further in 8.1.3 and 8.1.4.

8.1.2 Definition. Let S be any set in an inner product space V and s € S.
Then s 1s called an interior point of S and S is said to be a neighborhood

of s if and only if S contains some ball about s.

Examples. Suppose V is R with the usual inner product. Then |[A]] = |A].
Take S to be an interval [a,b] . We already know what an interior point of

S 1is3y it is any point of (a,b), that is, any point of S except an endpoint.
Let us check that this agrees with the above definition. If s € (a,b), take

P to be the smaller of s-a and b-s. Then every v satisfylng [[v-s | < P
that is, every v between s-p and s+ ps lies in S, so s 1is an interior
point. On the other hand, a 1is not an interior point of S, because no matter
how small P may be, v =a - %—'p satisfies |[v-a|| < p and v ¢ S; thus
there is a point in the ball of radius r about a not in S, Similarly for

b.

In the plane, let S be the closed unit disk, that is {v : | v]] <1 }.
The points of the unit circle ars not interior points of S and all other points
of S are. Say s8€ S and ||s]| <1. Then take f)=1'”5”- It
J| v-s {] <p » we have .
vl =llv-s+slicsiiv-sf+llsi<p+isf=1,
so v € 8. Hence 3 contains the ball of radius f about s, so s is an

interior point of S. ., On the other hand, if ||t | =1, then t € S, but
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t is not interior to 3. For, if o 1is any positive number, then
= 1
v={_1+ > P)t

satisfies [v-t || < p and v ¢ s.

If S is the unit circle, or any other set we should ordinarily describe
ag a curve, then S has no interior points. Speaking somewhat loosely, a
point of S 1s interior to S if and only if all of its near neighbors in
V are also in 5. Thus S contains a solid chunk of space surrounding each of
it interior points. The definition explicitly says the chunk is to be round, but
any solid part of space can be "pared down" to be round.
The definition doesn't specify whether the ball is question is open or
_closed. It doesn't matter. If S contains the closed ball about s of radius
£, it contains also the open ball of the same radius. If S contains the
,open ball of radius P about s it contains also the closed ball of radius ;—‘{:

about s.

8.1.3 Definition. Let V be an inner product space. A set S in V 1is called

open if and only if each of its points is an interior point.

We should check immediately that this more general meaning of the word open

is consistent with 8.1.1. Let S be an open ball in the sense of 8.1.1. Say

S={v:|vx|<p)
Suppose y € S3 we must show that y dis an interlor point of S. We know
‘"y-x][ <py %0 8 =p- Iy - xjl >0. We claim that the open ball of
radius © about y 1s a subset of S. Indesd, if 2z 1s in this ball, that is,
if JJz -yl <6, then
fz=xil = |l z=yy-2 | < [lz=y) + i y-21l <& + [ly=x|] = p3

so z € S.

There are lots of open sets besides open balls. Let w be a fixed non-zero
vestor in V. Let H={v: (v,w) >0)}. H 1s the half-space of vectors on

one side of the hyperplane { vt (v,w) =0 }. H is an open set. For suppose
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Y€ H. Then (y,w)>0. Sowemy take o = and consider the ball

W
Hwh
of radius o about y. If z is in this ball, that is, if 2=yl < P oo

then by the Cauchy-Schwarz inequality

[z s w2y | <lwlip = ()
so
,2) = (w,y) + (w,2=y) > (w,y) - |(w,z-y)] > 0.
Thus 2z € H. This proves that H contains an entire ball about y. Since y

may be any point of H, H 4is open.

It is worth remarking that the whole of V 1s open and so is the null set.
This is another example of the fact that our definitions are intended to apply

even in apparently trivial situations.

8.1.4 Definition. Let S be a subset of an inner product space V. Then 8§
is closed if and only if its complement (ie., the set of all points of V not

in S) 1is open.

The set { v : [jv-a| < g } is a closed set for any choice of a € V
and g €IR. For p < 0, it is empty. For p =0, 1t contains only the
single point a. For f3 >0, we have already called the set a closed ballj
it is left to you to check that it is indeed closed in the sense of 8.1.4.

Beware: Unlike a door, a set need not be either open or closéd. A half-
open interval on the line, say [a,b), is neither. Moreover, a set can be both
open and closed. In the present context, this is true only for the null-set and
the whole space. The concepts open set and closed set have a much wider
applicability than to subsets of inner product spaces. They lie at the foundation

of the subject lknown as topology.’

The ideas of open and closed are perhaps most readily understood in terms
of the idea of boundary points. These are the points at which a set abuts its

complement. Precisely, a point v is a boundary point of a set S if and only
if each ball about v contains points of both S and its complement. Here
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v may or may not belong to S. A set is open if it contains none of its boundary

points and closed if it oontains all of then.

A good rule of thumb is that a set described by strong inequalities (ie.,
< or > ) is open, while one desoribed by equalities and/or weak inequalities

(1s., < or > ) 4s closed. Thus, in three-space
(<x,y,z>::?+yz<z}

is open, while

{<x,y,2>1 x>0 and x#y:zz}

is closed.

8.1.5 Definition. Suppose S 1s an open subset of an inner product space.

The set S 1s connected if and only if every two points of S can be joined

by a broken line in S. That is, given any two points a and b 4in S, there
exists a sequence X Koy eren Xy of points such that each of the segments

8Ky, X)Xpy eevy X, 3%y X b lies in 5. (By the segment uv we mean

the set of points of the form Au+ (L - A)v where 0< A <1.)

On the line & set is connected and open if and only if it is an open
interval. In this ease the broken line can always be taken straight. In
higher dimensions, the situation can be more
complicated, as indicated in the figure. If,
for any two points a and b of S, the
segment ab lies in S, then S 1is
sald to be gonvex.

Our formal definition of connected will be sesn to agree with your intuitive
idea of connected set for open sets. Our definition does not apply to a cirele
since it is not open. A more complicated definition of connected can be given
that applies to arbitrary sets. It makes a circle connected and a line less

a single point disconnected as you expect.
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In most of our theoretical work with functions of several variables we
shall confine oursaelves to functions defined on open subsets of I". This
is analagous to considering only functlions defined on open intervals in IR.
There are, of course, cases in which it is desirable to discuss functions
whose domains include one or more boundary points, just as it is loften important
to consider functions defined on closed intervals in R. But boundary points
can be very complicated in two or more
dimensinns. The figure suggests one of
the unpleasant possibilities. (The long
thin tail of the shaded open set spirals
around infinitely often approaching the
unit eircle. Every point of the unit
circle is a boundary point.)

When the boundary is smooth, it causes no more difficulty than endpoints
on the line, but it is hard to give in advance a reasonable definition of a
smooth boundary, and if we attempted to state our theorems so as to cover
boundary points, we would spend an inordinate amount of energy on questions
that are clearly of secondary importance. It is best therefore to ignore
boundary questions in our general work and consider them separately whenever

they arise explicitly.

8.1.6 Definition. Let E be an open subset of an inner product space V.
and let f be a function from E to IR. We say that f is gontdnuous at

Vo € E 1if and only if

(Ve >00d8 >0) flvev, | <& = |£v) - £(v )| < E.

We say that f is continuous if and only if it is continuous at each point
of E.

This is just the old definition of continuous except that close in the
domain is now measured in terms of the norm. It still means that you get
approximately the right answer if you compute with approximately the right

argument.
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Because we assume that E is open, whenever § is chosen small enough
||v-v°ﬂ <% => ve&E. Weshall always take & this small; this guarantees

that f(v) will be defined.

We state without proof some standard theorems concerning the continuity of
sums, products, etc. The proofs are almost identical with “he proofs of the

corresponding theorems for functions of a single variable.

8.1.7 Theorem. Let E be an open subset of an inner product space, and let

f and g be two continuous functions from E to R. Let X, )u. €R. Then
A+ /.Lg and fg (defined pointwise as usual) are continuous. Provided

g does not vanish at any point of E, f/g is continuous.

8.1.8 Theorem. Let E e an open subset of an inner product space, and let

f + E—R be continuous. Let L??:]R—)IR be continuous. Then o £

is continuous.

Example. It follows that functions defined by rational expressions in the
coordinates are continuous provided we keep away from (ie., exclude from the

domain) points at which division by zero is called for. Thus

:9+g-1u-12
X+y

defines a continuous function having domain
{<x,y>:x+y#0}.

Then applying the second theorem, we see that

sin )?-rg-xu-lz
X+y

1s also continuous with the same domain. It follows that any function that

is defined throughout an open set by a single formula involving only continucus

functions is continuous. Thus
\/1 - x2 _ y2

defines a continuous function on any open subset of the interior of the

unit disk (on the whole open unit disk if we like) but on no larger open set,
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since the formula doesn't make sense beyond the closed unit disk. The formula
defines 2 funetion (which is indeed continuous) on the closed unit

disk, bu. we are considering only functions with open domains.

8.1.9 Definition. A subset S of an inner product space is called bouanded

if and only if there is a number M such that (Ys € S) ||s} <M.

In other words, S 1is bounded if and only if it is a subset of some ball.
It doesn't matter whether this ball is centered at the origin, as in the
definition, because the ball of radius M about v is itself a subset of the

5211 of radius M + |[lv]] about the origin.

Here is a theorem that is most convenlently stated for a function having

a closed domain.

8.1.10 Theorem. Let X be a bounded closed subset of an inner product space

and let £ ¢+ X —R be continuous. Then f achieves both a maximum and a

minimum value.

To say that f achieves a maximum value means there is a point x, € X
such that
(Vx¢€ x) f(xo) > £(x).
It is essential that X be both bounded and closed.
In practice the function f will usually be defined on a set larger than
Just X. The maximum and minimum valués guaranteed by the theorem are only

maximum and minimum in competition with values taken by f on X.

Example. Let f£(x,y) = (x + Zy)(x2 + Zyz -~ 9). Then f is defined on all of
JRZ. Let X be the set where x2 + 2y2 <9, a closed elliptical region.
X 1is closed and bounded, so there must be points where f achieves a maximum
and a minimum relative to X. Since f is zero on the entire boundary of X
(0., the ellipse x2 + 2y2 =9), while f has both positive and negative
values on X, both the maximum and the minimum values occur at interior points

of X. The theorem tells us nothing about how to find these points. Since
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the function f happens to be differentiable, however, there is an effective

method for finding them. We shall do so in section 8.2.

Consider the function g given by glx,y) = llxy It is defined on all
of Rz except the two coordinate axes. Let X be the square with vertices
at <1,1> <1l,2> <2,2> and <2,1> X is a closed and bounded
set, so g must achieve a maximum and a minimum relative to X. These are
easily seen to occur at the vertices <1, 1 > and <2, 2 >, respectively.
Note that on the closed but unbounded set W where x>1, y >1, g does
not achieve a minimum value although its values are all positive on W. On the
bounded, but not closed set U where 0 <x<1, 0 <vy <1, g does not

achieve a maximum value.

After theorem 7.1.10 we remarked that the convergence of a sequence in ;
finite-dimensional inner product space V 1is not affected by how we choose the
inner product in V. And this is equally true for convergence in terms of other
norms on V, even norms that do not come from an inner product. A similar
statement is true concerning the concepts we have introduced in this section.
The question of which sets are open or closed or of which points are boundary
points of a given set will not be affected by a change of norms. Similarly,
if we change the meaning of || || in definition 8.1.6 from one norm to another,
we won't affect the continuity of the function f.

However, this does not mean that f ¢ 112 — R 1is contlnuous if it is
continuous in each variable separately. Here 1s an example of a discontinuous
function f such that

For each fixed b, x+> f(x,b) 1is continuous R —R.
For each fixed a, y > f(a,y) is continuous IR —R.

(This is what we mean by saying f is continuous in each variable separately.)

rug)=?€%z if <x,y>#£<0,0>

£(0,0) = 0.

Let
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To check that f d1s continuous in x for a fixed value of y, say y =b # 0,

note that

bx

£0) = 77

which is continuous since the denominator is never zero. When b = 0, we have
£f(x,0) = 0 for all x; surely a continuous function. Similarly, £ is
continuous in y for each fixed value of x. However, f 1is not continuous.

It is, of course, continuous on the domain IR2 -{<0, 0>}, since it is
defined there by a single elementary formula. But it is not continuous at the
origin. For points of the form < X, > with & £0, £l ) =1/2,

Since there are such points arbitrarily near the origin, while f£(0,0) =0,

f 1is not continuous at the origin. In fact, f 1is constant except at the origin
along each line through the origin. On the line y = mx, f£(x,y) =m/(1 + mz),
except for < x, y > =<0, 0-> Hence in any neighborhood of the origin, f

takes on all values between -1/2 and +1/2,

Exercises.

1. Prove that the intersection of any two open sets is open. Your proof should
need no modificiation if the intersection should be empty.

2. Prove that the intersection of any two closed set is closed. Is the null-set
closed?

3. Prove that a plane in three-space is closed but has no interior points.

The situation is the same for a linear subspace of dimension ¥ in an inner
product space of dimension n, if k <n.

4. Show that what you ordinarily think of as the interior of a triangular region
in the plane is indeed the set of its interior points in the sense of 8.1.2,

5. How should the definition (8.1.6) of a continuous function be modified to

encompass functions with non-open domains?
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6. The example of the text of a function that is discontinuous but continuous

in each variable separately can be made even more surprising. Let

£(x,y) = ki if £<0,0
X = <X,y > < >
» 2 2]3 ’ ’

£(0,0) = 0.
Show that this function is continuous along gvery line in the plane, but is

nevertheless discontinuous at the origin. (For the latter consider points of

the form < A, o3 >.)

7. Let || ||1 and || ||, be any two norms on a finite dimensional vector
space V. There is a theorem to the effect that there must exist a constant

K such that
(Yvewn) Jivily sklivl,

(This isn't easy to prove, even if V is two-dimensional. Try it! ) Use this

result to prove that, if f : V-9 R is continuous using || ||; in the
definition, then it is also continuous using || |,- Show also that a subset
S of V that is open in the sense of || ||} 1is also open in the sense of || [|,.

|

1

1



8.2 Partial Differentiation

8.2.1 Partial derivatives. The simplest way to.apply the differential caleulus
to a function of two variable is to keep one of the variables constant and
consider the function as depending on just one variable. Suppose, for
example,
(2) £x,y) = 6x3 + x?‘y + 3y2 + sin xy.
We can fix the value of x temporarily, say x = 2, and consider instead
) 48 + L4y + 3y2 + sin 2y.
This function is differentiable and we can caleculate its derivative in the
usual manner and get
(4) 4 4 6y. + 2 cos 2y.
Geometrically, what we have done is to restrict the function to the line
x = 2. If we think of the graph of the original function (2), that is the
set of points < x, y, 2z > in ]R3 such tha{:

z = £(x,y)
which is a surface with one point above (or below) each point of the X-y
plane, then we are looking at the plane
x =2 in ]RB. This plane cuts the 3’
surface in a curve. If we think of
Yy and z as coordinates in this plane,
the curve is the graph of the funetion
(3), ie., the set of points <y, z > x=a

such that

z =t48+4y+3y2 + sin 2y,
Plane section of graph
The derivative (4) tells us about (not the function of the text)
the slopes of the lines tangent to the

curve in the plane and we can use this information as usual. For example,

since (4) 1is positive for y >0, we know that f increases along the line

x = 2 in the direction of increasing y. In fact, since (4) is zero for

just one value of y, say Yoo is positive for y > Yo and is negative
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for y < Yoo We know that, along the line x =2, f has a minimum value
at y ;3 etc. (It is easy to see that -mlu <y, < -2/3.)

We could similarly analyze f along the line x =1 by fixdng x =13
or along any other line of ti’te form x =a. When we fix x =a, f becomes

6&3 + azy + 3y2 + sin ay
and the derivative is given by
az + 6y +a cos ay.

Now it is clear that there is no reason to explicitly replace 'x' in (2)
by ‘*a'. We can simply differentiate (2) directly treating x as a constant
to get ,
(5) x2+6y + X cos Xy
and we can regard this new expression as defining a new function on all of 1'rl2.

This new function is called a partial derivative of f, in this case the

partial derivative of f with respect to its second argument. We shall
denote it '
L]
f2 or sz.
Both ‘fé /' and ‘sz' are symbols for a new function of two variables.
We have
fé(x,y) = Df(x,y) = < + 6y + x cos xy
and we can substitute in this formula as we please, for example

fé(a,B) =22 +18 +a cos 3a
D,£(0,0) = 0.

The partial derivative (3) is often called the partial derivative with

respect to y and denoted

L5
tad

£ .
or y

o/
D

We shall reserve this notation for a slightly different, but closely related,

situation. (See p. 8-52.)
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Similarly, we can treat y as a constant and differentiate with respect

to x. Then we get
D fGx,y) = £](x,5) = 18x° + 2xy +y cos xy,

called the partial derivative of f with respect to the first \'rariable. This
new partial derivative tells about the behavior of f along lines of the form
Yy *b. More precisely, fi(x,b) is the
slope of a line tangent to the curve }

z = £(x,b)
which we may think of as the intersection
of the plane y =b with the graph of f. y

Partial derivatives suffer from the

fact that they look at f along lines 3
X
only, and only along lines parallel to
Plane section of graph
the axes at that. It is therefore a {not the function of the text)

bit surprising that for the functions

commonly encountered the information contained in the partial derivatives
suffices to compute directly the behavior of f along any smooth curve.

The criterion for this favorable situation is simply that the partial derivatives
themselves are continuous functions. Any function defined by an elementary .

formula will fulfill this condition as long as the partial derivatives exist.

Functions of three or more variables (ie., functions from part of R to
R) are handled the same way. Partial derivatives are computed by keeping all
but one of the variables constant. If f depends on thres variables, we
find fé by keeping the first two variables constant and differentiating with
respect to the third. This amounts to looking at f along lines parallel to

the third coordinate axis. Suppose

£(x,y,2) = sin (x2 + y3 +2z).

Then 2 3
fi(x,y,z) = 2x cos (x° +y° +2z),

3

£3(x,5,2) = 3y2 cos (x2 +y° +2z),

fé(x,y,z) = 2 cos (x2 ~4»y3 +2z).
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Note that to compute partial derivatives of a functlon given explicitly by a

formula you need no new rulaes for differentiation. Just think of all but one

variable as constant while differentiating. After you have differentiated, the

result is once again regarded as a function on all of the original domain

(or somethinzg smaller if the derivative fails to exist at some points).

Example.

/3
glx,y) = x’i i

Here g 1s defined except on the line x +y = 0.

) = 22,
8o\Xy¥) = x +7)
for all < x, y > in the original domain.
oy 1 A
1\ Ix+y (x +y)°

and now we must exclude all points of the second axis, x =0, because of the

factor x"

2/ 3. The first partial derivative of g does not exdist at these

points,

Exercises. Discuss the domains on which the following formulas define funciions

and calculate their several partial derivatives.

1.

“ -y Xy
£(x,y) = @ 3. hix,y) = =z, y2
g{x,y) =xcos y - y2 4. f£(x,y,2) = sin (WZzB)
g(x,y,2) = ¢ % ¥ 105 (z + &)

h(x,y,z) = 3\/xyz (Discuss also where the partial derivatives are defined.)

i

Ir  f£(x,y) plarae) ealculate f]'., f;_, fié (= (ri)é ), and féi

Let V be the linear space of all functions from 13.2 to IR. Show
that the set W of those functions £ for which le is everywhere
defined is a linear subspace of V and that Dl :t W=V is a linear

operator.
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8.2.6 Higher order partial derivatives. The partisl derivatives just considered
are called collectively first-order partial derivatives. Since the first-order
partial derivatives of a function f : E—>IR. are themselves functions from
E to R, we can differentiate them again to get what are calle§ second-order
partial derivatives. If f 4s a funotion of two variables, we shall have two
first-order partial derivatives, fi and fé, and these will have two partial

derivatives each making four second-order partial derivatives of f, namely

e _ I Y ] " 1) 1R}
£11 = (1115 £330 £330 £35-

Then there will be eight third-order partiﬁl derivatives, etc. A function of
three real variables will have three first-order partials, nine second-order,
27 third-order, etc.

If f is a polynomial function, it is easy to see that fié = réi,
little experimentation with familiar functions suggests that this is usually the

and a

case. Indeed so. In 8.3.22 we shall prove a theorem to the effect that

" _ .
12 = fn

whenever these functions are continuous. Examples can be given for which this
equation fails, but it is valid for all functions given by elementary formulas
as long as the derivatives exist.

If £ is a function of more than two variables, the theorem just mentioned
is still applicable because f]'.é and féi are both computed by keeping fixed
the variables numbered 3, 4, ..., n. If fié should exist and be continuous
when the variables are allowed to vary over the whole domain of f, then it
will also be continuous when only the first two variables are allowed to vary.

The actual numbering to the variables doesn't matter, so we have, for
example,

fé:, = r"é, fé:,' = f'55, ete.,
provided these derivatives are all continuous.

The theorem applies as well to partial derivatives of orders higher than
the second. If the partial derivatives of f through order three are all

-econtinuous on the domain of £, then
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e Ty -f"' :f"' ey LA N

f123 = f132 = £330 = a3 =5 = fn3-
The first of these equations follows from applying the theorem for second-order
partials to fi. Similarly for the third and fifth equalities. Since

T _ v XY RY I T\
1’13 = f31 throughout the domain of f we must have (1‘13)2 = (rjl)z, that

t0e _ avey vee _
is, £33 =f35.  Similarly, fipf = £33,

Suppose E 1is an open subset of R®. A function f : E—R is sald to
be a function of class Ck Af and only if all of its partial derivatives
through order k exist at each point of E and are continuous‘ on E. For
such a function the order of successive differentiations is immaterial until
k differentiatiens have been performed. Counting all ways of aoing the
differentiation, there ;re nk partial derivatives of order k, but the
equalities cut this down to n(n+l)(n+2)..-(n+k-1)/k! distinct ones.

A function is of class C® if and only if all its partial derivatives
of every order exist (in which case they must be continuous).

The symbols ‘Ck' and ‘C®’  are also used to denote the set of

all functions of class Ck

or C®. These sets are linear subspaces of the
set of all functions from E to IR.

All of the so-called elementary functions (those compoimnded with addition,
subtraction, multiplication, division, radicals, exponentials, logarithms,
and trigonometric funetions) are c® except for "thin" sets in their domain.
If no radicals are involved there are no exceptional points at all. For
example, log (sin x + e'°) is defined for those <x, y, z > for which
sinx+ 62 >0 and 4s C® on the whole of this domain. Fractional power
functions are not infinitely differentiable at zero. Consequently, compounds

involving radiecals need not be differentiable at points where a radicand is zero.
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Exerclses.
1, Caleulate the four (three different) second-order partial derivatives of
the functions having formulas )

(a) xo* SNV (0) (x+¥y)oos (x-y) (&) Z+ ¥

2. Show that the funetions with formulas log (3@ + yz), arctan i’ N
and e*cos y are all solutions of the second-order partial differential
equation

g1+ -0,

known as Laplace's equation.

3. Suppose g 1is a particular solution of the linear partial differential

equation with constant coefficients

(2] [ X] (X (] ] -
afu + b:‘.‘l2 + cfzz + rfl + sfz + tf = 0.

Show that gi and gj are also solutions (assuming g € 03).

4, Prove that fié = féi if £ is a polynomial function from F to R

5. Show that the following function f is C1 and its mixed partial derivatives

(rﬁ and féi) exist everywhere, but fié(o,o) + féi(o,o).

f(ny)=ﬁ-€ if <x, y>#<0,0>

£{0,0) =0

6. Can there be a ¢ -function f : F— R such that fi(x,y) =o00s (1 + xzy)
and té(x,y) =sin (1 + xzy) ? Can there be a C2- function g oS R

such that

g1 (x,¥) =¥ sin #5y°  and g3(x,y) = x sin P
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8.2.7 Maxima and minima. Consider the function f : ]RZ—) R given by
2 2
fx,y) = (x° +2y" - 9)(x +2y).

It is clear that f 1is zero on the ellipse whose equation is

x2+2y2 =9

and on the line x + 2y = 0. These curves divide ‘the plane into four

regions. The sign of f 1in each of
£f>0
these reglons is shown on the sketch.

Somwhere in the lower left half- fr<o

elliptical region f must achieve - Q

a maximum, and somewhere in the upper <0

right half it must achieve a minimum.
(See the discussion on page 8-9.) Where are these points and what are these
maximum and minimum values of f?

Suppose the maximum is achleved at < a, b >. Then, considered only along
the line x =aea, f must achieve a maximum for y = b. Therefore, the

derivative of f along this line must vanish at y = bj that is

0.

fé(a,b)

Similarly, f must have a maximum for x =a along the line y =b, so

[l

fi(a,b) 0.

Thus we have two conditions that the unknown values a and b must
satisfy and we may expect that these conditions will essentially determine
a and b. Since

fi(x,y) = 3x2 + Uxy + Zyz -9

and 2 2
fé(x,y) = 2% + 4xy + 12y - 18,

the equations for a and b are

382+14ab+ sz- 9=0

®) 2 2
2a” + 4ab +12b" - 18 = Q.

. |
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If we double the first of these equations and subtract the second, we get

Ma2+43b-8b2=0

that is !
' 4(a + 2b)(a - b)

0.
"Hence either a - -2b, in which case (substituting back in (é) )

<a,b>=< \/E, -]2—‘\/6_> or <-\/€, %\/6>,
or a =b, in which case

<a,b>=<1,1> or <.l, -1 >,

The first two of these points are the points where the line x + 2y = 0
crosses the ellipse, so they are not the points we want. The others fall
one in the lower left half-ellipse, the other in the upper right half. Since

and f}

there is only one point in the lower left half at which both f! >

1
vanish, this point must be the maximum point. Hence the largest value taken
by f on the elliptical region is f(-1,-1) = 18.

The same argument shows that the minimum value of f on the upper right
half-ellipse occurs also at a point at which both fi and fé vanish, so it
must be at < 1,1> ‘and the minimum value of f on the elliptical region

is £(1,1) = - 18.

The argument we have just used is quite general and it lsads to a solution
of many maximum and minimum problems in several dimensions. We formalize the

ideas for reference.

8.2.9 Definition. Suppose E 1s an open set in R and f is a function from

E to IR. The point p € E is a local minimum point for f if and only if

there is a neighborhood N of p such that
f(p) < £(q) for all q € N.

The point r € E 4is a local maximum point for f 4f and only if there is

a neighborhood U of r such that

f(r) > £(q) for all q€ U.

This means that p 1s a minimum point in comparison with its immediate
neighbors only. It is quite possible that f takes a smaller value at some
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point s remote from p, An actual minimum point for f must also be a

local minimum point, but not vice versa.

8.2.10 Theorem. If E 1s an open set in R° and the function f : E—R

fi, £55 +vey £ exist at p, then these partial derivatives vanish at p.

The theorem gives us an often effective device for finding maximum and

minimum points. Find the points, called critical points, at which all the

first-order partial derivatives vanish. Usually there will be only a finite
number of these a;nd the required maximum or minimum point will be among them.
There are of course other possibilities for the maximum or minimum. They
might oceur at some point where one of the partial derivatives fails to exist.
Moreover, there is always the possibility that there is no maximum or minimum
point. Recall Theorem 8.1.10 which guarantees the existence of a maximum
when the domain considered is bounded and closed. The maximum might oceur at
a boundary point of the domain. At a boundary point Theorem 8.2.10 does not
apply, since p need not be a maximum point in comparison with all of its
immediate neighbors in every direction. However, we can be sure that either
the maximum occurs in the interior (in which case Theorem 8.2.10 does apply)
or at a boundary point. This is a direct generalization of the familiar case
of a function of one variable. The maximum value of a differentiable function
f over a bounded closed interval [a,b] in R occurs either at an interior
point ¢ 1in which case f'(c) =0 or at a boundary point, ie., either at
a orat b, ‘

Searching the boundary for a maximum or a minimum requires a different

approach. We illustrate by an example.

Example. Find the maximum and minimum values of

fx,y) = 23x2 + 72xy + 2y2

on the set where x2 + y2 <1.
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Since the set to >be searched is bounded and closed, we are certain that

maximum and minimum points exist. The partial derivatives are
fi(x,y) = 46x + 72y
fé(x,y) =72x + 4y.

These are both zero only at < 0, 0 >. So if the maximum or the minimum value
of f occurs at an interior point of the unit disk, it must be at the origin.
However, £(0,0) =0, £(1,0) =23, and £(1/2, - 1/2) = -47/4, so0 it is
clear that the origin is neither a maximum or a minimum point. These points
must occur on the boundary.

Since the boundary is a smooth curve, we choose a parametrization for it,
say t+> <cos t, sin t > The required points must correspond to some

value of t, so we consider the function g wherse
g{t) = f(cos t, sin t) =23 cos® t + 72 sint cos t + 2 sin® t .

=§2§,+%1_c°8 2t 4 36 sin 2t.

We can find the maximum and minimum values of g by the familiar one-variable

method.

g'(t) = - 21 sin 2t + 72 cos 2t.

This vanishes if tan 2t = 24/7, that is

2 tan t 24

1-tanft 7

whence tan t = 3/4 or - 4/3. Correspondingly,

i<%,%> or

1<d -4>

Then f achieves it maximum value, 50, on the disk at the two boundary points

<cos t, sin t >

£< 45 3/5> and its minimum value, -25, at the points + < 4/5, -3/5 >.

There is another method, called the Lagrange multiplier method, that is
useful in finding maxima or minima along curved boundaries. We shall study it
in section 8.5. Compare our work with that of section 6.3.
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In section 8.4 we shall take up a method for deciding (in most cases)

whether a critical point is a local maximum point or a local minimum point.

It 1s analogous to the second derivative test for functions of one variable.

Exercises.

1.

Find the maximum and minimum values of

(x - 2068 + ¥ - 15)
on the disk x2 + yz < 15.
Find the maximum and minimum values of

Py - x - ¥)

on the triangular domain where x>0, y >0, and x +y < 1.
Find the maximum and minimum values of

xjyzz(l - X -y -2)
on the tetrahedral domain in three space where x>0, y >0, z >0, and
x+y +2<0.
Find the points of the surface

=L

xy
that are closest to the origin.
Consider all planes in three-space that pass through <1, 2, 3 >
and meet the positive :é-, y-, and z-axes. '
Whieh of these cuts off the tetrahedron

of least volume ?
What are the maximum and minimum values of
xz + Xy - y2
on the unit square (the set where 0 <x <1 and 0<y<1)?

On the unit disk (the set where o+ yz <11
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8.3 The total derivative or differential of a function from V to IR.

The basic idea of differentiation in higher dimensions is the same as it
is in one dimension. Geometrically, it is drawing a tangent to the graph of
the function. Analytically, it is approximating the function by a function
of first degree. The tangent to a surface in three-space will be a plane, not
a line, and in higher dimensions it will be a hyperplane or “flat® space of
higher dimension. The dimension of the tangent to a surface of high dimension
will always be the same as that of the surface. Of all the higher dimensiocnal
cases the only one we can visualize is that of a function from ]Rz to IR.

We shall bezin with a primarily geometric treatment of that case. Then we
shall derive the same results more rigorously using analysis. The analytic
argmnént has the eclear advantage that it is applicable immediately to any

dimension. The geometric approach, on the other hand, can provide us with

images that make the analytic formulas highly plausible.

8.2.1 Inhomogeneous linear functions. If V is a vector space, the function
g ¢+ V— R 1is called inhomogeneous linear or a function of the first degree
if and only if it can be represented as the sum of a constant and a linear

functional g : V—™R. If V =]R2, this means

g(x,y) = X+ gx + yy

for some numbers o, p, and Y- Here the linear functional & 1is given
by E(x,y) = B+ YV

The graph of such a function is a hyperplane in V x JR. If V has
dimension n, then V x R has dimension n +1 and the graph is a coset
of a linear subspace of dimension n. For example, if V = mz, then
Vx R= ]R3 The graph ®f g (above) is the set of all < x, y, 2z >
such that
(2) z=o(+/3x+yy.
This is the < 0, 0, ot >coset of the linear space spanned by < 1,0, B>

and <0, 1, y > Conversely, any plane not containing a line parallel to

the z-axis has an equation of the form (2) and hence can be regarded as the
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graph of an inhomogeneous linear function from 112 to R. This means that

any plane in IR3 = Rz x R that is the graph of a function is the graph of

an inhomogeneous linear function.

Exercise. Prove: If g : V—R 1s an inhomogeneous linear function, say

g =ol +F, where ZT 1is linear, then for any v, b€ V
g(v) =g(b) + glv - b).

8.3.3 The tangent plane. Suppose that f is a function ]Rz—)n The graph

of £, that is, the set of all <=x,y, z > in R> such that
z = £(x,y)

is a surface S in ]RB. Let q be a point of S; say gq =< X, Y, >,

y 2
o' "o
Finally let P be the plane tangent to S at q. (We assume it is intuitively
clear what a tangent plane is. Also we assume that the tangent plane exists:
Not every surface has tangent planes at every point. For example, what would
you mean by a plane tangent to a cone at its vertex? ) We want to find the

equation of P. We assume it contains no line parallel to the z-axis, so it

1s the graph of some inhomogeneous linear function, that is, it is given by
2z =of + Px + Yy
for suitable constants o(, /J’, and y. How do we find these numbers?

The plane y = ¥, cuts S in a curve C passing through gq. We make
the plausible assumption that the line tangent to C at q 1lies in the plane P.
(This cannot be made into a rigorous argument without a definition of the
tangent plane, and we have none as yet.) We can regard x and z as coor-

dinates in the plane y = Yo Then C 1is just the graph
®

z = fx, y,)

The slope of the tangent to C at q is given by the derivative for x = Xy
that 1s,

4]

£1(x,0 750

The aquation of the tangent is therefore
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’
() 2= f(xg, y ) x - x) + 2.
If (4) is interpreted in 113, it deseribes a whole plane. To obtain just

the tangent line we must adjoin the equation '

(5) Y=y,

The plane tangent to a surface
contains the lines tangent to
x ~X curves lying in the surface.

Similarly, the plane x = X, cuts the surface 3 in a curve [ passing
through q. Using z and y as coordinates in this plane, the equation of

r 1is
z = f(xo, ¥)

and the tangent to [T at q has the equations

© 2 = fo(x, ¥,)07 - ¥,) + 2,

X=X.
[

Now the plane described by

Q) 2 =00, ¥ ) - x)) + £3(x , ¥) - ¥,) + 2,

contains both of the lines (4)-(5) and (6). Since there is just one plane

passing through two intersecting lines in three-space, P must be the plane
given by (7).



In the figure the surface S appears to be convex. Therefore it lies
entirely on one side of its tangent plane. There are surfaces, however, which
cross their tangent planes locally at every point. Consider, for example, a
saddle. In some directions it curves towards you and in others, away. This
means that the surface of the saddle lies partly on one side of its tangent
plane and partly on the other.

We can look at this phenomenon analytieally. A typical saddle-shaped
surface is a hyperbolic paraboloid (see figure, page 6-96). An example is
given by
(8) 2 =% - y2.

The tangent plane to this surface (obtained from (7) using f£(x,y) = x2 - y2)
is

2]
1]

2x (x = x)) -2y (v - y,) + z,

2

2
2x°x - Zyoy - X, +7Y,

(Because < Xor Vor 2o > is on the surface, 2z_=x 2. y 2.) This plane

° o o
lies below the surface (8) along the line y = Yo since

x2 - yo2 > 2x°x - 23,'02 - xo2 + yo2

for all x except Xy On the other hand the tangent plane lies above the
surface (8) along the line x = X, since:
2 2 2 2

2
X, =¥ <2x° -2y°y-x° +y

for all y except Vo

Our derivation of (?) as the equation of the tangent plane amounts to
this: If a tangent plane exists at <x_, ¥ , 2, >, then (7) must be its

and f)

equation; in particular, the first order partial derivatives f! 2

1
must exist at < Xos Yo >

What about the converse?! If fi(xo, yo) and fé(xo, yo) exist, will there
be a tangent plane! Not necessarily. The function f of section 8.1, page
8-10, although it is not even continuous at < 0, 0 >, has both partial

derivatives there. Since these partial derivatives are both 0, the only
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candidate for a tangent plane is 2z = 0 (de., the x-y plane). We wouldn't
want to call this plane tangent to the graph of f, because, for example, it
seems to bear no relation at all to £ over the line x =y. On this line
f is oonstant 1/2 except at the origin where it is 0. Except for this one point
the corresponding portion of the graph of f 1lies far away from our hypothetical
tangent plane. This example shows us that we wouldn't want to define the
tangent ‘plane using partial derivatives and equation (7). The definition we
shall adopt (in 8.3.17) says that the tangent plane at q to a surface S
is a plane through q that lies exceptionally close to S near q. (Recall
that the line tangent to a curve C through a point p is the line through
p that lies closest to C 1in the immediate neighborhood of p.) When the
tangent plane exists, it will of course be given by equation (7), but we must

not expsct the tangent plane to exist just because (7) makes sense.

8.3.9 The chain rule. Suppose now that @: nz—na is a function whose graph
is a surface 3 with a tangent plane at q =< Xgs Vo1 Zg > and that the
parametric curve T

{10) Tt < r(t), glt), hit) >

lies in S and passes through q at the time t = to. Analytieally, this
means that
(1) h(t) = @(2(t), g(t))
for all t, and f(to) =X, g(to) it A h(to) =2,

We think of (10) as a motion and regard its velocity vector at time ¢ o
as emanating from q. Since this vector is tangent to [7, 1t lies in the plane
tangent to S at q. The parm‘otric description of the line tangent to I is

A * L]
t— < x°9 yo’ zO >+ (t - to) <f (to)p g (to)’ h (to) >

and the tangent plane to S at q has the squation

2 -2 = Prlx, ¥)(x - x) + Palxs TG - 3,)-
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The fact that the line tangent to [T 1lies in the plane tangent to S becomes

(£t (8) = P lxy, 7,00 = x )b = 2P (8)) + Phlxy, ¥o)(t = £ )e" (t)

for all t, Cancelling out the (t - to), this is equivalent to
(2) BEy) = Prlxgs 7o) (8,) + Pylx,, 3,08 (8,).

This is a formula for the derivative of h given by (11). In fact, if ¢

and g are any differentiable functions with f(to) R g(to) =y we

o*
can define a function h by (11) and then the parametrie curve [ gziven by
(10) will lie in S the graph of ¢. Then (12) follows from our belief that
the tangent to a curve in S must lie in the plane tangent to S at the same
point.

Since the choice of t  in (12) is arbitrary (except that we require that
S have a tangent plane at < f(to), g(to), h(to) >), we can replace t, by t3

ie., if h 1is given by (n)_then
a3) () = @ (£(t), g()f' (t) + PLe(t), g(t))e' ()

for all t. This is a two-dimensional form of the chain rule for finding the
derivative of a composite function.

There is a nice interpretation of this chain rule‘. Suppose that a plane
has been heated irregularly ac that its temperature varies from point to point.
Put coordinates on the plane as usual and say that @ (x,y) 1s the temperature
at the point < x, y >, Now imagine an observer moving in the plane along

the parametrized curve

t i < f£(t), gt) >
Then h(t) is the temperature observed at the time t. Then (13) says that
the rate h' (t) of temperature variation at any time is the sum of two contri-
butions, one ?i(f(t), g(t))f'(t) due to the component of the veloecity in the
¥~direction and another q7é(f(t), g(t))+g'(t) due to the component.in the y-
direction.
Let us describe what we have done in more general terms. Glven a function

Fe JR'—--HR2 and a function P BZ-—> R, we form the composite function
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2
PoF : R™—R.
Granting that @ and F are differentiable, we would like a formula for the

derivative of @ coF.

We can express F with component functions f and g, that is
F(t) = < £(t), gt) >.

Then (@oF)(t) = P(r(t), g(t)) = h(t), so oF =h. Thus (13) is the
desired formula for the derivative of ¢ oF.

Note that (13) is a direct generalization of the chain rule for the derivative
of a composite function k = Wof where VW and f are both functions from

R to R. According to the usual chain rule
k' (t) = W (e(e))f (L),

Equation (13) is much like this one, the principal difference being that (13)
has two terms corresponding to the two arguments of @ . It is easy to guess

the formula for the derivative of a composite funetion of the form
R —E'— R.
If the first step is given by
t— < fl(t), fz(t), ceey fn(t) >
and the second is @, then the composite is
B(t) = gLy (), (), «ooy £,(8))
and the derivative is given by

R'(t) = (D) @)y (L), £,(¢), ..oy £ (£)DE (L) +
(D Py (0] £5(t), ovy £ (EDIEL(L) +

. . . . . . . . . +

(14)

(D, @) ey (8), £,(8), -.ny £, (N1 (1)

Note that here f:'l_ means the ordinary derivative of the function fl. Since
this function has only one argument, it doesn't have partial derivatives. We
* have used the Di-notation for the i-th partial derivative of @ to reduce the

possibility of confusion in the interpretation of subseripts.
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8.3.15 Approximation by inhomogeneous linear functions. Now we shall look at
the same ideas in analytic terms. Instead of finding a plane tangent to the
graph of ;‘, we find an inhomogeneous linear function that approximates f
very well.
Suppose to start with that f is a function from 112 to R, say,
flx,y) =2xy +2x =y + 5.

This is a continuous function so, near the origin, it can be approximated by
its value £{0,0) = 5. The error in this approximation will generally be of
the same order of magnitude as the deviation of the argument frem < 0, 0 >.

For example, if x =y = .001, then
|£(x,y) - 5] = |5.001002 - 5] = .001002
and this is about the same size as [ <x, y > | = (.001) JZ.
However, if we include the first degree terms in our approximation, that is
if we approximate f by g where g(x,y) =5+ 2x -y, then the error
jr(x,y) - g(x,¥)]
is a good deal smaller than | < x, y >[|. For example, as long as
l<x, y>| <.001,

l2xy]| = 2|x]-|y]
2¢.00L) i< x, ¥ >

|£(x,y) - g(x,¥)]

IA

(because |x| < .00L and |y| < |l<x,¥>] ).

Suppose instead we wanted to approximate f near <1, 1 >, Since
£(1,1) = 8, we can approximate f roughly near <1, 1 > by the constant
function 8. We can do much better if we allow some first degree terms.
Since

flx,y) =8 +u4(x-1)+(y-1) +2(x -1)(y - 1)
we take
hix,y) =8 +4(x - 1) + (y - 1).
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If we use h in place of f for <x, y > near <1, 1 >, the error

will be small relative to |[< x, ¥ > -<1,1> . In fact,

[l

j£(x,¥) - hix,y}| = |2(x - 1)(F - 1)]

<26)<x, y>-<1,1>|,
provided |<x, y>-<1,1>[| < §.

Start again with a new function, say

2
£(x,y) = %",

and suppose we want to approximate f near <1, -1 >. Temporarily put

x=14+w, y=-1+v. Then

£lx,y) = @ +u)(- 1 +v)°

1+u-2v-2uv+v2+uv2.

We take as approximator
g(x,y) =1l+u-2v=1+ (x-1) - 2(y +1).

The error in our approximation will be

26y - glen)] = | - 2w+ 2 4w

< 2ful*lv] + |v|* + [u]+|v)?
5“8"<“’V>"
provided [[<u, v>| < & <1. We can rewrite this
[£0x,y) - glx,¥)| < 48[|<x, y>=-<1, -1 >
as long as |<x, y > -<1, -1 >|] < § <1. Again the error is small

relative to the deviation of the argument from the chosen point < 1, -1 >,

at least for small deviations.

It should be clear how we can find similar approximations for any polynomial
function near any prescribed point. For more complicated functions the existence
of good first degree approximations is less obvious; in fact there are functions
which cannot be so approximated near some points. We take the existence of
such an approximation as the definition of differentiability.
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Let f be a real-valued function defined on some neighborhood of a point
<a, b> in Eﬁ. We say that f is differentiable at < a, b > if
and only if there exists an inhomogeneous linear function g : ]RZ—-> R such that

(Ve>o)(3s>00¥xy) J<x,y>-<a,b>||<s =

(16)
'f(x9)') - g(XQY>] < 5“< X, y>~-<a,b >u'

Compare this with 5), page 7-5.

There can be at most one such function g. (The proof is left to you.

There are suggestions in exercise 6.)

The connection between this definition and our previous work lies in the

following fact.

8.3.17 The plane tangent to the graph of f at the point < a, b, f{a,b) >
is the graph of g. '

There is no way we can prove this statement, because we still have no
definition of the tangent plane. In fact we shall adopt this statement as
the definition of the tangent plane.

This begins to sound like some sort of logical hocus-pocus. In a sense
we are free to define tangent plane as we please, but this is not really so.
The point is that the analytic definition of tangent plane does indeed capture
the geometric idea of tangent plane. We may not be able to prove it, but you
should convince yourself that it is true. We have introduced the idea of tangent
planes into this analytical discussion just to build a bridge to the more
intuitive, but for many more vivici, realm of geometry. Technical proofs about
differentistion will all be carried out in analytical terms using (16). As

far as proofs are concerned, we could as well omit all references to geometry.

Our next step is to show by analytical argument that the function g of
(16) is given by

18) g(x,y) = r(a,b) + fi(a,b)(x -a) + fé(n,b)(y - b).

This 1s the analytical version of the geometrical argument leading to (7).
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To begin with we know that

glx,y) = « +px+yy
for some o, p, and y. If (16) is true,.then g(a,b) must be f(a,b).
(¥o matter what €& and § are, the cholce x =a, y =b fulfills the
condition J<x,y>-<a,b>| <8, so |f(a,b) - gla,b)] < £+0. )
Hence

f(a,b) = o + a + yb,

so we can write

g(x,y) = f(ayb) + ﬁ(x - a) + Y(y - b)-

It remains to show that g fi(a,b) and Yy = fé(a,b).

To this end consider pairs < x, y > of the form <a + h, b >. Given
€ >0 and the corresponding 8 from (16), if 0 < |h| < &, we shall have

l<a+h,b>-<a,b>] =|h] < ® and therefore v
|f(a+h,b) - g(a+h,b)]| < €]n].
Substituting the value of g(a+h,b) from (18) and dividing through by |h|,

fathd) - flab) _ ’3‘< c.
" s

But this says precisely that /3 1s the derivative at a of the function
x — £(x,b),

and this is exactly fi(a,b). Thus /5 = !’i(a,b). Similarly, y = fé(a,b).

We come now to the chain rule. If
n(t) = @), gt)
then
B' () = PIUE(L), g(E))E"(2) + PYE(L), glt))g’ (t),
provided that f, g, and @ are differentiable (f and g in the usual

sense, @ in the sense of (16)). This can be prowed analytically, but the

argument 1s quite lengthy and we defer it to p. 8-48.
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There is an important special case of the chain rule. Suppose
t > < f£{t), g(t) > 1is a uniform rectilinear motion; that is, f£(t) =a +tu,
g{t) = b + :tv, where a, b, u, and v are constants. Then
h(t.:) = @(a + tu, b +tv)
and
h'(0) = @1(a,blu + @, (a,b)v
is called the derivative of ¢p at <a, b > along mim <u, v >,
The partial derivative (‘pi(a,b) is just the special case u -1, v - 0.
When < u, v > 1s a unit vector, we can think of the parameter t as representing
distance instead of time. Hence, in this case, the derivative of @ along
< u, v > can be interpreted as the rate of change of ¢ with respect to
distance in a certain direction. Such a derivative is often called a directional

derivative.

The derivative of @ at a fixed point < a, b > along a vector <u, v>
depends linearly on the choice of v. This focusses our attention on the

linear operator
<u, v> = q:i(a,b)u + cpé(a,b)v

from Rz to R. This linear operator is called the differential of ¢ at
<a, b > We denote it d¢(a,b). Since we have coordinates, we can conveniently

represent it by the row vector
I Pyap)  Pylap) .
Since there is a row vector at every point < a, b >, there is a function
dP 1 <a, b> > || <pi(a,b) ':pé(a,b) .

This function d@, called the differential of ¢, is defined on the domain

of ¢ (assuming, of course, that @ is differentiable at each point) and

its values are row vectors. Such a function is called a covector field or

a differential form. (See also §7.4) The components of d@ are the first

order partial derivatives of @ in order.
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Think of < u, v > as the column vector u 3 ” Then the derivative of

@ along ”:" at <a, b> 1s

u
49 (a,b)- " v " 4
an ordinary matrix product since d¢P(a,b) 1is a row vector of length 2,

With this notation we can express the chain rule very neatly. Suppose

is an open set in JR2 and ¢f: £ 9R 1s a differentiable function. Suppose

(3]

I is an interval in R and F : I — E 4s differentiable. Then CoF : IO R

is differentiable and its derivative is
(PoF)! =de F.

(Recall that F' is a colum vector.) We must know where to evaluate these

vectors. F' 1is to be evaluated ats t and dp at PF(t).

8.3.19 Approximate caleulation. Look back at our definition of differentiability.
The essential point is that a funetion is differentiable at < a, b > if it
.can be well approximated by a suitable function of degree one near < a, b >.
When it exists this first degree approximation is given by (18) which we ecan

write

g(x,y) = £(a,b) + df(a’-b)." ;:g "

Note that df(a,b) is the first degree part of the approximating function g.

To focus on the approximation aspect we might write

(20) £(x,y) ~ £(a,b) + df (a,b)" | ol

p:fovided " ;:; " is small, So far the view we have taken of this approximation
has been that we know f(x,y) and f(a,b) and the approximation condition (16)
determines the row vector df(a,b). But we often look at the situation the

other way about. We know f(a,b) and df(a,b) and we use (20) to estimate

f(xpy>-
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Suppose, for example, that ﬂmw=xe+ﬁ.TMnf®ﬂ)=%.

Suppose we want to estimate £(9.1, 3.9). We have
- —x —x
df =
) =y s TTF T
ar{9,4) = || 5.9 7.2
Hence
£(9.1, 3.9) ~ 45 + || 5.9 7.2 ||~||_g:§" = 4487

The true value is 44.8677 to four decimals.

If we had used the familiar one-dimensional approximation to estimate

£(9.1, 4) we would have considered
z(x) = xvx + 16.

Then g'(9) = 5.9, so g(9.1)~ 45 + (5.9)(0.1). To obtain f(3, 3.9) we
would have considered
hy) = 9V9 + %,

h'(4) =7.2, h(3.9) 45 +(7.2)(-0.1). Note that the two-dimensional approxi-
mation procedure simply accumulates the two changes due to small variations in
the two arguments. This is quite a general fact. Small changes in the value of
a function due to small changes in the arguments are additive in the first
approximation. This simply reflects the fact that, in the first approximation,
the change in value is linear in the argument changes.

The two-dimensional approximation suffers from the same disadvantage that

the one-dimensional one does. There is no estimate of the size of the error

in the approximation. It is possible to get such estimates using second derivatives

and we shall do this in §8.4.
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Exercises.
1. Find the equations of the planes tangent to the following surfaces in m3

at the points indicated.

(a) xyz =6 at <1,2,3> (d) x2+2y2-322=3 at <2,1, 1>
(b) z=x/y at <6,2,3> (e) z=sinxy at <0,2,0>
(e) z = ex'yz at <1,1,1> (f) z = x3 -2xy + yu at <1,1, 0 >

2, Planes are drawn tangent to the surface given by z = xy + 2y + x3 at the

points <0, 0, 0 > and <1, 1, 4 > At what angle do they intersect?

3. The sphere x2 + y2 + 22 = 6 and the surface 2z = 2xy meet in a curve.

What line is tangent to this curve at the point <1,1,2>7

4. Justify the rule that the relative error in a product is approximately the
sum of the relative errors in the factors. (The relative error means the

error divided by the true value.)

5. There is a differentiable function f defined near < 1, 1 > such that
£(1,1) =1 and forall <x,y >, 2z =f(x,y) 1s a solution of

25-m2+xz-y=o.

Find the partial derivatives of f at <1, 1 > and use them to estimate

£(1.1, 0.9).

6. Show that if h 1is an inhomogeneous linear functlon that satisfies
(Ve>0)(38>0) |l<x,¥y>|| <8 = |n(x,y)] < ell<x, v >
then h 1is everywhere zero., Use this to prove that there can be at most
one inhomogeneous linear function g that satisfies (16). Note that there .

is no loss of generality to take <a, b >=<0, 0 >

7. Prove the formula d{(fg) = fdg + gdf, where f and g are differentiable
functions from 1!2 to R. Note that fdg is pointwise the product of

a scalar and a row vector.
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We shall now state the definitions and prove the principal theorems
concerning the differentiation of functions from an n-dimensional inner

product space to R.

8.3.21 Definition Let £ ©oe an omen set in a finite dimensiomal inner product
space V. Let a € V and let f be a function from 3 “to R. Then f is

said to be differentiable at a 4f and only if there is a linear functional

h : V—R such that
(Ve >0(F s>0)(Yvev) Jlv-all<s =
| £(v) - @) - h[v-a] | < lv - a|]

Here and subsequently we have used [ ] to indicate where a linear functional
is acting on a vector. Before continuing the definition it is important to have
in mind the fact that the linear functional h, if it exists at all, is unique.
The proof of this fact in the general case is essentially the same as in the
two-dimensional case, so we omit it. See exercise 6, page 8-39. The linear
funectional h is called the differential of f at- a. We shall usually

write it df(a). If V =" or if V has dimension n and a linear coordinate
system has been introduced, we shall take df(a) to be a row vector of length

n. In this case h[v-a] means the matrix product of the row vector h and

the column vector v - a.

The function f is said to be differentiable if and only if it is
differentiable at each point of E. In this case df the differential of f

is a function from E to V* or to the set of row vectors.

This is an extension of definition (16) for 11?.2 written in vector

notation. The inhomogeneous linear function there is
g(v) = £(a) + hiv - a].

When f 1is differentiable and V 1is ]Rn, it follows from the same

afrguments as on page 8-35 that

ar@a) = | £]@a) fhGa) - - £l |
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Hence the function df is the row vector of partial derivatives of f:

ar =g g oo

We have seen that, even in dimension two, the existénce of its partial
derivatives is not sufficient to guarantee that f 1s differentiable. However,
the following theorem gives us a way of checking that f 1is differentiable
by inspecting its partial derivatives. If they are continuous, f is differ-
entiable. This criterion shows immediately that any function given by a single
formula in the coordinates invelving only differentiable functions is itself
differentiable. (Radicals can cause trouble at a point where a radicand is zero.)
Hence the question of differentiability can be ignored in the vast majority of

cases.

8.3.22 Theorem. Let E be an open set in IR'. Let 2 € E and let f be

a function from E to R. Suppose that the partial derivatives

fi, r;, ceey f;l are defined in a neighborhood of a and are continuous at a.

Then f is differentiable at a and

daf(a) = || fl(a) fyla) - - o fn(a) -

Proof. We shall give the proof only for n = 2. The proof for larger values
of n involves no additional ideas. We shall also assume that a =<0, 0 >.
This is no real loss of generality, but it makes the formulas look a lot less
complicated.

The idea of the proof is to estimate the difference between f and the
alleged good linear approximation of f using the mean value theorem. Since
the mean value theorem, in the form that we know it, applies only t;o functions
of one variable, we break the difference iﬁto two parts in each of which only one

argument actually varies. (If the proof were for R® there would be n parts.)

We must estimate the difference
D = £(x,y) - £(0,0) - x£1(0,0) - y£3(0,0).

We have to show that |D| is appropriately small whenever f<=x, y>) is
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sufficiently small.

First we represent D as the sum

D = £(x,y) - £(x,0) - y£5(0,0) @y

+ £(x,0) - £(0,0) - xri(o,o)

corresponding to steps alenz the broken

lire shown, We shall show that these

parts are separately small,
Let a positive €& be given. Choose & >0 so small that

(23) The partial derivatives ri and 1}

A of radius & about a =<0, 0>, and

exist at all points of the disk

(24) For any <u, v>¢ B,
Ifl(u,v) - fl(0,0)] < Ef2 and
[£5(u,v) - £,(0,0)] < El2.

We can do this because the derivatives exist.in a neighborhood of a and are

continuous at a by hypothesis.

Now suppose ||<x, y>| <&, thatis, <x,y>¢ . We shall prove

that
(25) [£(x,y) - £(x,0) - y£3(0,0)] < €[y]/2
and

(26) [£(x,0) - £(0,0) - xfi(o,o)] < &lx|/2.

Consider the function g defined on [0,y] (if y is negative, it will
be on [y,0] ) by
g(t) = £x,t).
For values of t in this interval, <x, t >€ A, soby (23) g is differ-

oentiable at all points of this interval and
g' (1) = £3(x,t).

(This is the definition of the partial derivative fé.) Hence we can apply the

mean value theorem to g. There is a number v between 0 and y such that
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() - g(0) =g"(v)(y - 0).

That is,
£0r,y) - £(x,0) = y£3(x,v).

Hence

[£(x,¥) = £(x,0) = y£5(0,0)} = |y|*|f3(x,v) - £3(0,0)]

1A

€ lyl/2.
The last step is by condition (24) using the fact that < x, v >€ A, Thus
(25) is established.
The mean value theorem also applies to the function t > £(t,0) and
we get
£(x,0) - £(0,0) = xf} (u,0)

for some u between 0 and x. Therefore,

[£(x,0) - £(0,0) - x£1(0,0)] = x|« |£] (u,0) - £5(0,0)]

< &lxj/2.
Again we used condition (24). This is (26).

Finally we have

A

ID] < |£(x,¥) - £(x,0) - y£5(0,0)] +

[£(x,0) - £(0,0) - xf}(0,0)]

A

£
Sl +1vl) < ell<x, y>].

iA

The last inequality follows because |x] < Jx° + ? =|l<x,y>| and

similarly, ly| < [l<x%, ¥y >I].
Thus we have proved
(V<x,y>en2) ||<x,}>-<0, 0>||<§ =
|£(x,y) = £(0,0) - xfi(o,o) - yfé(o,o}| <ell<x,y>-<0,0>|.

Since we showed how to get the appropriate § given any positive € , we have
proved that f is differentiable at < 0, 0 > and that its differential is as

claimed. (J
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If E 1s an open set in V and f : E—IR is'a differentiable function,
its differential is a function from E to V*; in coordinates, it is a function
from E to the space of row vectérs. Naturally we prefer that this function be
continuous. It will be continuous if and only if, when expressed in coordinates,
its corponents are continuous. Since these components are just the partial

derivatives, we have the following important fact.

= (the set of n-long row vectors) if and only if the partial derivatives

fi, fé, veey f; are defined and continuous on =.

Proof. It follows from the previous theorem that if the partial derivatives are
defined and continuous on E, then f{ is differentiable at each point of E
and its differential, being given by the partial derivatives, 1s continuous.
(Note how the fact that E 1is open enters here. Theorem 8.3.22 would not be
applicable at a boundary point of E. Fortunately, no point of E is a boundary
‘point.)

Conversely, we know (although we haven't given a proof in the general
case) that at any point where f is differentiable all its partial derivatives
exlst and df conéists of these partlal derivatives assembled into a row vector.
Hence, if f differentiable at each point of £, it partial derivatlves are
defined on all of £, Moreover, if df 1is continuous, its components must be

continuous; ie., the partlal derivatives must be continuous. 0

On page 8-18 we defined a function to be Ck

if all of its partial derivatives
through order k exist and are continuous. We mentioned the fact that, as long

as the derivatives involved exist and are continuous, the order of differentiation
is immaterial, and we shall now prove a theorem to this effect. As we noted

before, the theorem really concerns only two variables, so we state it only for

that case.
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9 8.3.28 Theorem. Let f bea Cl'-function from an open set E in B> to R.

Suppose f) is defined and continuous at eath point of E. Then féi is

Y _ aee
defined at each point of E and f21 = f12'

Proof. To prove this we should pick an arbitrary point < a, b > of E and
show that fé]'_(a ,b) exists and equals fié(a,b). There is, however, no real
loss of generality and the proof is easier to read, if we assume a = b = 03
so we make this assumption. Then the problem is to prove

1] 1]
29) hl_i'mo fz(h,o) ; fZ(O,O) _ fié(O,O)
since the limit, if it exists, is féi(o,o). We can write this

1 L ( Lin £BJO - £(G0) | 4 £(0.K) - fgo,o))

h-—0 k=0 k-0
= lim  1im ﬁ% (t(,k) - £(1,0) - £(0,k) + £(0,0)) .
h—0 k=0
Here the inner limit is known to exist because f is Cl , but the outer limit
is not yet known to exist. However, we are given that

£ (0,k) - £2(0,0)
e {© ,00) = lim b Rl il Ak A4
12 K50 k

= 1im  lim ﬁ; (£(r,k) = £(0,k) - £(h,0) + £(0,0))
K—0 h—>0

with both limits existing. Comparing, we see that our two expressions differ
only in the order in which the limits are taken. So we must prove that in this
case it doesn't matter in what order the limits are taken. It is easy to give
examples Iin which an iterated 1limit exists in one order but not in the other,

or in which an iterated limit exists in either order but the two limits are
differentl. So there 1s something non-trivial to prove here. The problem of
“reversing an iterated limit is typical of analysis. ‘Many important theorems
simply assert that under suitable circumstances an iterated 1limit may be reversed.
For example, theorem 4.6.10 says a power series may be differentiated term-by-

v
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term; this means that the limit associated with the infinite sum and the limit
associated with differentiation may, in the case of convergent power series, be

taken in either order.

The proof is accomplished by an ingenious application of the mean value

theorem. Suppose k £ 0 and put
g(t) = f(t,k) - £{¢,0).

Uranting that k is small enough so that everything lies in &, this is the
difference of two functions each of which is differentiable for t near 0

since it is given that f; exists throughout E. Hence if |h| is small
(30) 5(h) - g(0) = hg'(un)
for some number u between 0 and 1. HNow
g' (t) = £ (t,k) - £(t,0)
for all small t, so

(31) g’ (uh) = £ (uh,k) - £ (uh,0) = kf7(uh,vk)

where v 1s between 0 and 1, by a second application of the mean value
theorem using the fact that f}, exists. Hence if |h| and [k| are small

enough but not zero
(32) f(h,k) ~ £(h,0) - £(0,k) + £(0,0) = hkfié(uh,vk)

since the left hand member is g(h) - g(0). The continuity of fI'LZ'Z shows that

this is nearly hkfié (0,0) so the desired result follows easily.
The detailed argument is as follows. We must prove (29), that is

(VY €>0)(3 8>0)(Vh) 0<|h]< & =
(33) '
£3(,0) - £3(0,0) "

- 1é(o,o) < €.

Let &€ >0 be given. Here is the recipe for choosing . Since E

is open, we can find a disk centered at < 0, 0 > that lies in E. We know
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that fié is a continuous function, so we can choose a smaller disk A centered

at <0, 0 > so that
(34) [£1500,7) - £1,(0,0)] < €/2

whenever < x, y >& A. Let & be half the radius of A. Then if |x| < §

and Jy]l < 8§, <x,y>¢ A.

Now we must prove an inequality, the last part of (33), involving an
arbitrary real number h satisfying 0 < |h| < §. Let such an h be fixed.

For any real k satisfying 0 < |k] < §, the function z is defined
for |t| <h and is differentiable. Hence (30) is valid for some u € (0,1).
Since the segment from < uh, 0 > to < uh, k > 1lies entirely in A and
therefore in £, and since fié exists at all points of E, we can apply the
mean value theorem to fi, regarded as a function of its second argument alone,

and ve obtain (31) where < uh, vk > is a point of A. Now by (34)
|£15(un,vk) = £15(0,0)] < €/2.

We know this even though we don't know what u and v arej; all we need is that
they are both between 0 and 1.

Using (32) divided through by hk, we have
1 {fhk) - £(h,0) _ £{0,k) - fgo,o)) v
Ih ‘ K ] - 0,00 < /2
This inequality is true for all values of k with 0 < ]k] <&, s k—0,
the left member has a limit because f.'2 exists. We have therefore
[ £ (£3(h,0) - £3(0,0)) - £23(0,0)] < E/2 < E
h V27! 24 12 - "

This is the inequality we set out to prove.

This proves that (33) and hence (29) is true. a
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8.3.35 Theorem. Suppose & 1s an open set in a finite dimensional inner product
space V and f + E— R is a differentiable function. Suppose I 1is an open
interval in R and g : I—>E is differentiable. Then fwr : I —R is

differentiable and its derivative is given by
(£og)' () = af(g(e))a' ()],

(Remember, g'(t) is a vector in V, 'df(g(t)) isin V¥, and [ ] indicates

L

the action of a member of V* on an element of V.)

Proof. We need only prove this for a fixed (but arbitrarily chosen) value of *,
say to. For brevity's sake we introduce vy T ',j(t.o) and h - df(:;(to)) - dt‘(vo).
Since g* (to) is a colum vector and h is a row vector, they have norms.

From the Cauchy-Schwarz inequality it follows that
(36) falvl] < Iinfl-1lvll
for any v & V. (To derive this formally, use 5.4.18.)
We want to prove that (fcg)'(to) = h[g’ (to)]. This is the same as
showing that

e £(g(t)) + (¢ - tOn[e" ()]
is the best linear approximation of fog near to. Hence we must estimate
D= £(g(t)) - £lg(t)) - (¢ - tn[e" (e ).

We break D 1into two parts which give the errors due to approximatin: f and g,

respectively.
D = £(g(t)) - £g(ty)) - h[g(t) - gt )]
+hfgt) - glty) - (& -t gt ).
For t near t  the first of these parts is much less than llg(t) - g(to) il
which is itself of the same order of magnitude as |t - t,]. We shall show

directly that the second part is much less than |t - to} . Altogether we find

ID] £ €t - ] Af t is near enough to t,- Now for the details.

Lot a positive & be given. Because f 1is differentiable at Voo there

is a positive 61 such that
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(Yvew) flv-vli< & =
(37) '
[£(v) - £(v,) - hiv -‘v°]| <.

€ ‘ v-v
L Toe LA
(]
Because g 1s differentiable at to it is also continuous thére, s0 there is

a positive & such that |t - tol <ty =

(38) o lle®) - et )l < & and
[0 - () - & - £ £ -
59 s = gty) = (& - e () || < s It t|

Now let t be any number satis'fying Je-t ) < §. Then
e - st)IE = Ngt) - alty) - (-t e (t,) + (b - t )" () |l

(%0)

IA

e - g(tg) = (& - tder () Il + It = tolllet (el

A

(€4 Nere ) e - & \

Because (38) is true, we can replace v' by g(t) in (37). Remember that
v, = g(t ). With the aid of (40) the resulting inequality simplifies to

¢

@) 1£Ge(8) - £(a(8))) = hig(t) - gt ]| < e - ¢

By (36) and then (39). we have

A

| h[g(t) - g(t) - (p-p6>g;(t°)]Jf_ Ib]kifett) ~ g(t,) = (t=t )g' L),

£
3 lt - tol.

I

Putting this together with (41) we have
o] < €]t -t [.

Thus we have proved

(Ve>od s>oxyt) -t | <d =
lelet)) - £lele)) - (b - e mle ()] < €]t - ¢ |-

This is precisely the statement that (fog)' (t,) = k(g (to)] . Since t_ was

chosen arbitrarily, this éonipletes' the proof. [
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When V is ]Rn (or when coordinates have been introduced into V) then

g ¢+ I—E has components g1» 8ps vty By and g' 1is the column vector with

components g9 gé, cees g;. The differential of f is the row vector

liye D+« - Dl
and o
(£og)"(t) = (Dyf)gy (t) + (Dyf)ga(t) + + + + + (D flg!(t).

We have left out the arguments of the partial derivative functions Dif . They
are all to be evaluated at g(t). This is the formula we guessed on page 8-71 .

It can be written in full without arguments as follows
(£og)' = ((Byf)oglgy + ((D,f)eglgy + * * * + ((D f)ogle), .
but is most commonly abbreviated
" - M M “ e e *
(fog)? = (y ey + (D)gy + + (an)gn.
Formulas in partial differentiation are often quite long if written out in full

so they are often abbreviated. To understand them you must think about what has
been omitted. ’

Exercises

1. What is the natural domain of the function given by

£(x,y) = ?/f?-}'z ?

At what points is it differentiable? Same questions for ¢ :
2lxy) = -k,

2. Suppose that f : V>R is differentiable at v, With differential h there.
Let w be a fixed vector in V and consider the function g(t) = i‘(v° + tw)
By calculation from the definitions without use of the chain rule, show
that g'(t) = hw].

3. Show that the function f given by

©

£(x,y) = 72
=+ ¥

has a derivative along every vector at < 0, 0 > but is not differentiable
at that point.
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With the notations of Theorem 8.3.35 and assuming that f and g are CZ,

derive a formula for (fog)'’.

Let v be a fixed vector field on ]RZ, is., a2 function from F.2 to the

set of two high column vectors. If f is a differentiable function IR2 —/R,
we can differentiate f at any point < a, b > along vf(a,b). The result
is df(a,b)[v{a,b)], a number. Hence df[v] denotes a function from

R?' to RB. Assuming v is continuous check that
T f — dr[v]

is a linear function from Cl to C0 satisfying

(») T(f+g) = £+(Tg) + g (1£).

(The products, represented by °*, are to be taken pointwise.) A linear
opsrator satisfying this identity is called a derivation. Note that partial
differentiation is a special case corresponding to a constant vector field.
(Which?) It is an interesting theorem that the only derivations from C®

to €% are of the kind just constructed where v is a c® vector field.

Consider the functions f and g given by
fx,y) = e X siny

1

g(x,y) = —=———
l4+ye
Consider the iterated limits
1lim  lim f(x,y) 1im  1lim £(x,y)
Xx-»00 y 00 ¥y x>
1lim  1lim g(x,y) lim  lim g(x,y).
x> y2o v x®

Explain what happens.

Prove that if f : V— R 1s differentiable at the point v € V, it is also

continuous at v.
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8.3.42 Leibniz® notation. When we take Cartesian coordinates in a geometric
plane P, we are fixing two functions x and y from P to R. The
coordinates of a point q € P are then x(q) and y(q). It ié important
to note the difference between this interpretation of 'x* and 'y' and the
one you may be more familiar with. An equation like x2 + 2y2 =1 for

curve is often interpreted as referring to
2
(43) (<x’y>gx2+2y -_-1}’
a set of points in mz. In the new usage we should interpret it as
2 2
(44) {aq:x(@ +2y@) =1},

a set of points in P. In (43) 'x' and 'y' are dummy or pattern variables,
serving only to tell how to test whether a given ordered pair of numbers is in
the set or not. In the latter 'q' is a dummy while 'x' and ‘'y*' refer to

specific functions defined geometrically in term of axes in P. When dummies
are used in a mathematical expression, you can always replace them by different
letters as long as no confusion of symbols is thereby introduced. For example,

{<u,v>=u2+2v2=1)

refers to the same set as (43). On the other hand, if we write
2 2
{gq:u(@) +2vi@)" =1}

the presumption is that *u*' and 'v' represent functions from P to R

probably different from x and y, so this set is probably different from the

one given by (44). To go even further to illustrate the distinction, note that
(<y,x>:y2+2x2=l)

is the same as (43), but

{q:y@?+2x@? =1}

is different from (44).
We have generally used 'x', 'y*', '2', and 't* as dummies when we
define functions. Thus we might define F @ ]Rz—-) R by

F(x,y) = x2 + 252,



Here 'x' and 'y' are dummies as we can ses by noting that the formula
F(u,v) = W o+ 2%

has exactly the same meaning. However, if 'x' and 'y' are the names of
functions from P to R, then

x2 + Zy2

is a function from P to IR; specifically the function

q— x(@)® + 2y(q)2-
(Here 'q' is the dummy.)

The distinction we are making here is often glossed over, but you must
make it in order to understand the extremely useful Leibniz notation for
partial derivatives.

Suppose f : P—>IR is any function and x and y are the usual coordi-
nate functions. Since a point q of P is completely determined when x(q)

and y(q) are known, there must exist a function F : Bz-—> IR such that
£(q) = Flx(q),y(g))

for all q € P. This is usually abbreviated f = F(x,y). Assuming F is

differentiable, then %ﬁ ! denotes a new function from P to IB given by

@) = @P(x(a),y6a)

which we may abbreviate

§—§ = () F)(x,y).

(This is not the only way the symbol aa—i is used, but it is the commonest.)

Similarly,

?75 = (D,F) (x,¥).

This is Leibniz' notation for the derivative. You are familiar with it,
of course, for functions of one variable. (If y = f(x), then % = f1(x). )
It is very commonly used in applications of mathematics. Often applications

are concerned with functions defined on space, like the temperature or the
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pressure at a given point. ,Let such a function be f and, in terms of some
coordinate functions x, y, and 2z, say f = F(x,y,2). Although the ultimate
objective may be to find F (ie., a method for computing f), it is f that

has a direct real-world interpretation. Similarly, the derivatives of F are

of of af
B a—y, and ?2°

space, often have an important physical interpretation.

only rules for computation, but being functions defined on

8.3.46 Change of coordinate systems. Suppose f 1is a function defined on
a plane P and we have two different cocordinate systems on P. Then f has
partlal derivatives in both systems and it is important to kmow how they are
related.

As a first example, suppose we have a linear coordinate system with
coordinate functions x and y and a second linear coordinate system with
coordinate functions u and v. We assume that both systems have the same
origin., Then we can express x and y linearly in terms of u and v. To
be definite, say

x =2u +vV

¥y =3u +v.

(These are equations connecting functions on Pj; for example, x(q) = 2u(q) + v(q).)

af of af af
Suppose we @w 5% and 2y’ How can we find 34 and v ?

There is a function F : R°— R such that f = F(x,y) and a function
G: R >R such that f = G(u,v). Therefore
(ul) G(u,v) = F(2u + v, 3u +v).

Although this 1s really a relation between functions defined on P, we can
think of it as a formula for G in terms of F. Thinking of v as fixed

we can differentiate using the chain rule to find Gl t

1t

G} (u,v) F]'_(Zu + v, U+ V)2 + Fé(Zu +v, 3u +v)3

2F] (x,y) + 3F(x,¥)
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In the Leibniz notation this becomes

f _,f , 4
bu"28x+33_y‘

If we differentiate (44) with respect to v keeping u fixed we get
Gz'(u,v) = F]’_(Zu +vy, Ju+v) + F(2u +v, 3u+v)
which becores

af _ 3f af
v 5 toayc
Mow let us do a more complicated case. Assume x and y form a Cartesian

coordinate system (ie., the axes are perpendicular and their scales are the same).
We introduce polar coordinates r and © into P taking the positive x-axds
as the initial ray as usuwal. Then /J and O are new functions from P to
R. (Actually © isn't defined at the origin and there is some ambiguity else-
whare, tut it doesn't matter for the present considerations.) And x and y

are related to f) and © by

X = P cos e

y= pPpsin®
Then

£ = F(peos 8, (:sinS)
and
o ;—; = Fj(poos B, psin®) cos® + Fy(pcos O, PsinB) sin O
= g—icose + %sine.

Similarly,
(48) X - (- poos®) + 3L (psind)

We can easily generalize these examples. Suppose u and v are any two
functions on P and that x and y can be expressed in terms of u and v,

say

X = cf(u,v)
¥y = VY(u,v)
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where P and Y are differentiable functions. Then

£ = F(p(u,v), Y(u,v))

B = AP EW, YO @D ¢ EP D), Plae) W)
JALdx L a9y
28X au 3y 3u
Similarly,

Ve
e
Qs

L x , 2f,3y
ax dv Ay v

Note how the Leibniz notation obviates the necessity of any notation

at all for the intermediate functions F, P, and VY.

This new form of the chain rule extends immediately to higher dimensions.
If, for example, f can be expressed differentiably in terms of X, ¥, and z
and x, y, and 2z can in turn be expressed differentiably in terms of u,
v, and w, then f can be expressed in terms of 4, Vv, and w and
3 _af x . 2y , M 2
3u 3x du 2y du 9z 2u
and there are similar formulas for g% and aag .

Since gf is a function on space, we can start over again and differen-

tlate it. We obtain the second order partial derivatives
PEYS LS
x (ax) and dy ax) :
These are usually abbreviated
Pt ana %

aZ dydx
According to Theorem 8.3.28 we will usually have

% 2%
3ydx ~ Iy

Calculating second order partial derivatives in one system of coordinates
in terms of the partial derivatives in another is a problem of frequent occurrence

that requires careful attention. We illustrate by showing that, for any
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function u on P, the Laplacian

Formulas (47) and (48) are valid for any smooth function f on P. In

particular they are valid for f =u, for f = Ju/dx, and for f = Jdu/ dy.

Hence
Q) i“l = M.l Y Ju
(49) 3{’ 3% °°s © + 5y sin ©
-a— ('3_1_1_ = bzu =) ﬁ 4
3 \ax 3E cos + y3x sin ©

2 [} - 2% %
3/’ (ay Sdy cos® 4+ 3y2 sin O

Now we can differentiate (49)., Remember that -3{-’ cos O = g; sin® = 0,
since © 1s treated as a constant when calculating %{; .

2,
2u . 2 aE)cr:sss + a—u)sine

ap° ap \3x ap \ay
(50) f 2, o 32 2
= g:}cos e +2§$sine cos® + g—;gsinze .
Formula (48) can be written
u _ _,Qu u
e Voax * oy
Hence

2 2
-x - a;g 21
X ax y( Ya + xayax

2u 2y @)

“Vay *+ x(-yj—wy +xgy7-)

2 2
422 2u 29 du _ 2u
=y - 2xy + - = +y=
o Ixdy * 3y (x Y )
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Divide through by /)2 and add (50). Remember x = p cos e, y-= /)sin 8.

%, 1% oh ol bxi2ey ).
dy

2
u
32 T PPt T a2 + ¥ (;2 x
Transposing the last term and using (49) we get
u . 1%, 1w o P, ok,
aPZ PZ bez P a() axz ayz

A function u 1is called harmonic if it satisfies Laplace's equation

‘

where x and y are Cartesian coordinate functions on the plane. Harmonic
functions on three space are those that satisfy the three dimensional Laplace

equation

2u BZu azu

%)? + ? + 3—22- =0,

where x, y, and 2z are three-dimensional Cartesian coordinate functions.
Many important physiecal functions are harmonic in three-space, for example,
gravitational or electrical potentials in empty space. A great deal has
been discovered about solutions of Laplace's equation.

Let us determine all harmonic functions on the plane that depend only on
the distance from a fixed point. We naturally take that point as the pole
of a polar coordinate system. If u is the function, the Laplace equation is

2 ¥
+ F_'lf =

function of r) alone, that is

o
5

= 0.

Y
S
|y

We are asking that u Dbe

®

u=H(/>)

Then the partial derivatives of u with respect to © are zero, and those
with respect to [ are glven by the ordinary derivatives of H. Our equation
bscomes

B(p) +{];'H'(P) = 0.
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This is a second order linear equation. - It may be regarded temporarily as a
first order linear equation for H' and solved by the methods of §3.4. We
find . :
H'(/:) “p
and hence
u =a+blog /.s
where a and b are constants. Note that only the constant solutions are

smooth at the pole.

fZxercises

1. Suppose f = u3 + Juv - v2 where u and v can be expressed differentiably

2 2
in terms of some functions x and y. Find g—fz» gsi;-. g—xg: ;x_af;’ and

2
% (in terms of u, v, g—;‘:, ete. ).

- g )4
2. If g = H(eos y, sin x) find 3% 2nd 3 °

3. Given that

show that
2 2

o°r 2 3

= - = £ + 23=.

IR a—yg W

4. Suppose that f @ ]RZ—) R is a differentiable function and that x and
y are the usual coordinate functions on mz. Show that

- of
daf = &'dx + 3y dy.

5. Suppose that x, y and u, v are two different Cartesian coordinate
systems in the plane with the same scale. If f is a Cz-funct.ion on
the plane (this means f can be expressed in terms of x and y witha
c?-function from I'RZ to R), show that

RN U S

2 T a2 TR

The two coordinate systems need not have the same origin. Note that if



this were not true, the Laplacian of a function would not often be of any
physical significance. Actually, except for constant multiples, the
Laplacian is the only second order differential operator with this

invariance property. That fact explains its ubiquitous character.

Find all solutions of laplace's equation in the plane that can be written
in the form H((J) cos n8 or K(P) sin n® where n is an integer.
(After finding a second order ordinary differential equation for H, try
Hp) = pt) '

These solutions are extremely important because Laplace's equation is
linear. The set of all solutions is therefore a linear subspace of the set
of C2-functions. This subspace is infinite dimensional, so it doesn't have
a basis in the sense of 2.4.1, but the solutions found in this exercise span
the set of solutions in the sense of §5.5: every solution of Laplace's
equation can be represented as a 1limit (in a suitable sense) of finite linear -
combinations of these simple solutions. The theory of Fourler series figures
most importantly in representing the solutions. Use Fourier series to solve

the following problem.

Find a continuous functions f from the closed unit disk in the plane
to R that satisfies Laplace's equation in the open unit disk and has
preussigned (continuous) values on the unit eircle. Don't worry about
convergence questions. Just assume that the solution is a convergent

infinite sum of the solutions found above.
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8.4 Taylor's series.

In chapter 4 we saw that elementary functions of one variable can usually
be expanded in a power series. The facts are similar for functions of several
variables.

We shall show that the second degree terms in the Taylor's seriss for a
function at a oritical point determine, in most cases, whether the oritical
point 1s a maximum, a minimum, or a saddle point.

8.4.1 Polynomial functions. Let P be a plane. Choose a Cartesian coordinate
system for it and let x and y be the coordinate functions. Any function
from P to IR of the form

S BXFpy o+ $%° + .en 4 3x" 4+ qxn'ly + oo+ oyt

is called a polynomial function on P. The degree of this polynomial function

is the highest total degree of non-zero terms occurring (after everything has
been properly collected and simplified, of course). For example, x5y7 has
_degree . 12. The degree of x(xy - ya) + x;y3 is three.

There are two useful ways to arrange the terms of a polynomial. In one we
write first the term of degree zero (ie., the constant term), then the terms of
degree one, then those of degree two, ete. Then our function is represented as
the sum of a constant, a linear form, a quadratic form, a cubic form, ef;c.

(The word "form" is often used to deseribe a polynomial function that is homo-

geneous, that is all the terms are of the same degree.) For example,

2 +3x+2y+x2-y2 +3x2y-y3.
constant  linear quadratic cublic

This representation is often convenient when we want to consider points near
the origin. At these point x and y are both small, so the quadratic terms
are generally smaller than the linear terms, the cubic terms are generally

smaller than the quadratic terms, etc.
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Jometimes it is better to write (or imagine) the terms in a two-dimensional

array

2 +3x +x2 +0

2y +0 + 3x2y

-y2 +0

P

In theoretical work with a "general" polynomial g, we usually write it

s = pP.q
B Z/ 0(p’qu

Pyq
Sometimes it is better to put Bp,a” p! q!o(p ¢ Then
’ 9,
g = I £y
= L.
.4 P,q P* q

The advantage of this way of writing it becomes apparent when we differentiate.

2w . 1
2x %, pp,q -1t §!

where now the sum involves only values of p > 1. The general derivative is

ot "2 Pra o G
afay® ﬁp.q p-r)t {q-s)t
where the sum is now restricted to indices p2>r, q > s.

The value of this derivative at the origln is easy to get. Since x  and
y vanish at the origin, only the constant term (éorresponding to p=r, q=38)

is not zero, so

br+s
ax’ays © = ﬂr s
Since we are using the Leibniz notation, the argument of a partial derivative is

a point. Hence we have denoted the origin here by 0. In sums involving partial

derivatives of various orders, it is understood that the zero-th derivative is

the function itself.
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From this expression it is clear that there is a polynomial of degree n
(at most) whose partial derivatives at the origin of all orders up to n have

preseribed values, Furthermore, this polynomial is unique.

Bverything we have done here has an immediate and evident generalization

to hizher dimensions.

8.4.2 Taylor polynomials. Let f be a real valued function dofined'on a neigh-
vorhood of the origin and differentiable there. Then tl;ere is a polynomial g
of deiree at most one that approximates f well at 0. That means |f ~ g

is small relative to \/x2 +y . More precisely, for a point v near O,

|£(v) - g(v)| 4is much less than \/x(v)z +3(v)° = |lvll - In full detail

(Ve >0)(d8>0Wv) |v)i<s ==
[£(v) - gv)l'< €llvll.

This is, of course, just the definition of differentiability.

We know what the polynomial g 1is. It is

£0) + %%(O)x + ?Wf(o) v.

(This is just formula 8.3(18) converted to Leibniz notation with a =b =0.)
Wo can describe it as follows: g 1is the polynomial of degree at most one that
has the sﬁme value as f and the same first partial derivatives as f at the
origin.

To get an even better approximation of f we should try a p'olynomial of
higher degree. There is a unique polynomial g of degree two at most that has
the same value and partial derivatives as f at the origin through partial

derivatives of order twoj that is

ap"q 0 - ap"‘qf
oL v A

for p +q <2. We require, of course, that f has second order partial

derivatives. In fact we shall assume that f is 02 . With this hypothesis
we shall prove that " |f - g| is small relative to ** + yz; that is



(Ve>o0xI 8>0)(¥v) vl <5 =

l£() - g@)] < Hvli?.

If f is a function of ¢lass Ck

near the origin,  the polynomial g
of degree at most k such 't;hat (3) is true for p + q < k 1is called the
k-th Taylor polynomial for f at the origin.

We can also define the Taylor po]_.ynomials for f at other points. The
k-th faylor polyomial for f at v~ 1is the unique polynomial g of de:rse

at most k ‘such that

ap"'qg : _ ap"'qf
axpayq (v°), =3 yayq (Vo)
for p +q <k, It can be written explicitly as a surf. -If the coordinates .

of v, are a and b (ie., x(vo) = a, y(vo) = b), then

g = Z Py ) §x-a)pv§x-b)q
-3 PATRL A qt

the sum being taken over all non-negative p, q with p +q < k.

This is a generalization of the ore dimensional case and extends immediately
to more dimensions. For example, in dimension three the k-th Taylor poljynomial

for a function f at v, is

3 P ) (xa)® o) (ze)”
3xPayddzT o p! qt rt - ?

the 'sum being taken over all non-negative p, q, r with p+q+r <k Hére

a, b, and c¢ are the coordinates of vy

Exercises.

1. Find the seoond Taylor polyhomial for the following functions at the
points indicated.
(a) 1+§2+v+y2 st <0, 0> (o) oxb(xq-:q) at <0, 0>

(b) tan (x+y).afc <0,1> '(q) are sin (x - y) af,.:<q',o>;
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8.4.2 Taylor's formula with remainder. Just as in the case of one variable
the crucial step in showing that a function is actually ap.pro:dmted by its
Taylor polynomials is to show that the error c'an be written in terms of
higher order derivatives.

As is frequently the case, the results we want are easier to state and
discuss in terms of the Leibniz notation but easier to prove in terms of the
F, Fi, ... notation. )
Theoren. Let G be an open set in R?' and let ¥ : G—R be a function of
clLss'C'?. Suppose < 2, b > and < ¢, d > are two points of G such that
the segment S joining them lies wholly in G. Then there is a point <r, s >

on 3 such that

#(c,d) = F(a,b) + (c-a)l-"]"(a,b) + (d-b)Fé(a,b)

) 1 2.0 ve 1 2t
+ 5 (c-a) Fll(r,s) + (c-a)(d-b)Flz(r,s) + 3 (d-b) F22(r,s).

Proof. For brevity let h =c¢ -a, k =d - b. Define a function 73 of one
variable by
@(t) = F(a +th, b+ tk).

Then ¢ 1is defined at least for 0 <t <1 and
q)' (t) = hFi(anh, bitk) + kFé(Mth, ‘b+tk)
2 2
@"(t) = h"F]] (a+th, betk) + 2hkF) ) (atth, btk) + KF))(a+th, bitk).
According to the extended theorem of mean value
PQA) = PO) + @ (0) +3,P(3)
where g is some number between 0 and 1. Using our formulas for P and its

derivatives and putting r =a +fh, s =Db + £k, the result is (4). Note

that <, s > is on the segment jJoining <a, b> to <e,a> O
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For refersnce purposes we state without proof the generaligation of this
theorem to arbitrary dimension.

8.4.5 Thooren. gt G be an open set in R" endlet F: G —R be g function
of class (?.,m 8 =<ay, 8y, - a, > and ¢ =< e, Gy revy S >

are two points of G such that the segment S joining them lies whglly in G.

Then there is a point r on S such that ‘ .

Fle) = F(a) + 2 (oi-ai)Fi(a)
i=1

1 .
+3 é% (°1"1)(°;’aj)ﬂj(")- O

The theorem extends as well to higher degree Taylor polynomials. If F
1p of class CP, the function < of the proof is cP and the extended theoren
of mean value tellsg us that

®  PQ) = PO) + PO+ EPO) + oo+ Sy PPV 5 @5,

where E 1is somq number between O and 1.
We can calculate the derivatives of ¢ as we did before, but the notation
soon becomes awkward. So we introduce the differentiation operators I, and D,.

Then we have

¥ —_ -

() = thF + kDZF = (th + kDZ)F
"(t) = KP0CF + 2hKDL DF + KPDSF = (h)y + kD,)°F
¢ (t) = W'DF + ZhkD, D, 2 Dy + kD,
and in general
1) - i

Pt) = (th + kDZ)' F

where all the derivatives are to be evaluated at < a + th, b + tk >. Because

the operators Dl and D2

function F has continuous derivatives), we can treat expressions like

commute, that is, DD, = DD, (as long as the

(th + sz)i as if they were ordinary polynomials. Putting these values
into (6) we obtain '
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T

F(e,d) = F(a,b) + hFj(a,b) + k& (a,b)
.)lz F"( b 'x] k2 ve
2y e )+ hkFlZ(a,b) + 2 Fzz(ﬂ.b)
7) P
+ 1oy (D) + kD) )P7IF) (a,0)
+ %! ((hnl + kD2>pF)(a+§h, b+ gk).

This is valid for any function F of class CP provided the line segment
Joining <&, b > to <e¢,d>=<a +h,b+k> lies in the domain of F.

Formula (7) is called Taylor's formula with remainder. There is, of

course, a similar formula for functlions of more variables.

The number & occurring in (?) depends on a, b, ¢, and d. Only rarely
18 there any reasonable way to compute £ . Hence we usually only estimate
the last term of (7)

Suppnse this last term is expanded as a sun.

1 ped
é, :—x Tﬁ_ﬂz("ib‘z"il’)(a +§h, b + Ek)

Since we are assuming that the p-th order derivatives of F are eontinuous,

all the derivatives appearing here will have values rather olose to their

values at <a, b > provided h and k are small, no matter what 5 is.
We shall use this argument to justify the claim made at the top of page

8-54 concerning the approximation of a function by its sescond Taylor polynomial.

e second Taylor polynomial for F at < a, b > evaluated at <ec, d >

#{a,b) + (c-a)F](a,b) + (d-b)F}(a,b)

+ %,(c-a)zFii(a.b> + (c-2)(d-b)F 5 (a,b) + %}(d-b)zFéé(a,b).

s differs from the right side of (4) only in that the second order derivatives
are eviliated in different places. The difference we want to estimate is

therefore



E = Lr2(Ri(r,e) - Fj(aib)) + hk(F3(r,8) - Fi3(a,b)
(8)
+ 2P (ryy(r,0) - Fhp(a,b).
jiven & >0, we can choose a positive & so small th:t the disk A of
radius & about < a, b > 1lies wholly in J and
9 ]F;.%(u,v) - Fis(a,‘:)j < &

for i, J =1, 2 and any choice of < u, v> in A.

Now if <ec¢,d>¢ O, the line cegment from <a, b > to -~ c, d > lies
in 4 and < r, s > lies in 3. Hence (9) is applicable to =2ci o the ‘erms

in (8) and we get

1] < %52& + |nkle +%—k2&’_

< a(h2+k2) = Efl<e,d>-<a, b>l}".

(The penultimate step because |hk| < ®?% + kz)/Z.)
To get this inequality to look like our claim on pa;e 8-64 we switch back
to Leibniz notation. Suppose f = F(x,y) and vy is a point with coordinates

a and b, Let gz be the second Taylor polynomial for f at Vo Finally

take ¢ - x(v), @ =y{v). Then I becomes f(v) - ‘;(V). and
[£v) - g()] < €llv - v I°

provided |lv - v [l< 5.

8.4.10 Taylor's series. If F is a function of class C°°, then at any point

F will have Taylor polynomials of every degree and we might reasonably hope that
these polynomials will converge to F. We are led, therefore, to consider the

double power series

i 3
xa) 3%,‘9- (0,20, %) (a,0).

This series is known as the Taylor's serises for F at <a, b >  As we have
mentioned in chapter 4, even in the case of functions of one variable, the
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Taylor's series of a function need not convergs; and even if it does converge,
it need not converge to F(x,y). However, for the functions commonly encountered,
1t will converge te F(x,y) at least for small values of |x-a| and |y-b|.
The convergance will be absolute and various formal manipulations of series,
such as term-by-term differentiation, will bs valid, just as in the case of one
variable.

Since a oonvergent double (or triple or higher) power series will also make
sense for complex values of the variables, Taylor's series lead naturally to
the theary of functions of several complex variables, one of the most active
areas of mathematical research today.

#Ahen we want to find the Taylor's series for a function of several variables
it is ofteﬁ eaéier to get it by formal manipulations than by calculating deriva-
tives. An example will make the ideas clear. ‘

Find the Taylor's series for log(cos x + sin y) through terms of degree

three at < 0, 0 >. (This is the same as the third Taylor polynomial at < 0, 0 >.)

We know that
2

cos x =1 - % + terms of degree > 4

siny -y - §3+ terms of degree > 5

2 3
log (1 + z) =z-%+§-+terms of degree > 4.

(These are just one variable Taylor expansions.) So put 2z =y - § - %’- + terms
of degnee > 4 1in the last of these series. Since

z2 = y2 - xzy + terms of degree > 4

3 3

and z” =y’ + terms of degree > 4

we find

2 3
log (cos x +siny) =log (1 +y - ==L 4 «e0)
276

2 3
S TE R SO

"

«d

[
b

terms of degree > 4

2 1.2 . 1.2 1
x -3y +5xy+gy3

[N TS

+

terms of degree > 4.
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3ecause we replaced z by a series that bezins with first deiree terms
(ie., the constant term is zero )‘, the successive powers of 2z Dbegin with terms
of higher and higher deiree in x and y. Terms of dezree at least four in =z
produce only terms of degree at least four in x and y. Hence the'y may be

neglected if our goal is only to find the terms of degree three or less.

Taylor polynomials are often useful in practical computation. When they
are found by formal. manipulations, as above, one sets no easy way to estimate .

the error, however.

Exercises.

1. Using the methed of formal power series manipulation, find the third degree’
Taylor polynomial for the following funetions at <0, 0 > or <0, 0, 0 >.

(a) cosh (x - y + xy) (d) log (x + cos y)
(b) aresin (x +y - xz) (o) exp (xy - sin z)
() sin (x +y) (f) Qa+ x)Y

cos (x = y)

(g)
g j oxp (V1 +x+ty )dt
(h)jl og(1+xt dt

2. In 1(h), for what values of x and y would you expect the Taylor series

" to converge?

3. The equation xs-jc(xzo-spx-l hag the root x =1 for * = 3 =0.
There is & C™ function f of two varisbles such that x = £(oL, ﬂ) is
a root of the above equation for any small & and B, and such that
£(0,0) =1. Find the Taylor polynomial of degree two for f at <0, 0 >.
(Try the method of undetermined ccefficients. Compare 4.6.31. You need not

prove that the series converges.)

4. Suppose F 1s a polynomlal function of degree at most three. Show that

in formula (?), p. 8-67, with p =2 you can always take § =1/3.
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8.4.11 Analysis of critical points. In $8.2 (p. 8-20 £f) we looked at the
problem of finding the maximum and minimumm of a fumetion of several variables.
We showsd that a local maximum or minimum of a function F can occur only at

(a) a critical point, that is, a point where all the first order partial

derivatives of F vanish, or

(o) a boundary point of the domain considered, or

(0) a point at which F is non-differentiable.

Osqany we deal with everywhere differentiable functions, so case (c) does not
often arisse.

Even in one dimension a critical point need not be either a local maximum
or a local minimum. For eﬁmple, x3 has a critical point at 0, but it is
neither a local maximum point nor a local minimum point for 13 . One test for
the existence of a local extrsme value in one dimension is to examine the second
derivative. Suppose & 4is a critical point of F (de., F'(a) =0). If
’F"(a) >0, then a is a strict local minimum point, that is, F(a) < F(x)
for all x near a but different from a. If F"(a) <0, then a is a strict
loeai maximum point. If ¥'(a) = 0, the test fails; we cannot decide on the
basis of this information alone whether F has a local extreme valus. We
shall develop a similar test for functions of several variables using the second
order partial derivatives at a oritlical point.

Firat, let us loak at the one dimensional case from the point of view of

laylor's series. Expand F at a eritical point a.

P(a +h) = F(a) + 3 2F"(a) + -ov .

(The linear term is omitted because F'(a) =0.) If F'(a) >0, the term
-21- hZF"'(a) will be positive for all values of h except 0. For small values
of n this term, although small, will still be larger than the higher degres

terms omitted, since the latter all have the factor h3. Hence
F(a + h) > F(a)

for all small but non-zero h (ie., {h| small) and a is a striet loeal minimum
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point for F. Similarly, if F"(a) <0, a will be a strict local maximym point.

If F"(a) =0, then the second degree terms do not control the looal behavior of
F and the test fails.
Now suppose F 1is a funotion of two variables with a oritical point at

< a, b > The Taylor's series for F at <a, b > beglns
Fla +h, b+ k) = F(a,b) + 2(:7F}3 + 20kF)) + KRy ) 4 oo

where the derivatives are all to be evaluated at < a, b >. (The linear terms
ars omitted becsuse F:'L(a,b) = Fé(a,b) = 0.) Because all subsequent terms in
the series involve h and k to at least degres three, we expect the variation
of F near <a, b> to be essentially controlled by the second degree terms.
Omitting the factor 1/2, these terms are a quadratic form in h and k called
the Hessian form of F at <a, b >  The behavior of F near < a, b> is
in most cases determined by the Hessian form. We shall show that
(a) If_ the Hessian form of F at < a, b > 1is positive definite, F has
a strict local minimm at < a, b >.
(b) If the Hessian form is negative definite, F has a striet local
m:d.mvm‘at <a,b>
(o) If the Hessian form takes both positive and negative values, then
< a, b> 4is neither a local maximun or & local minimum, but some kind
of saddle point.
There remains the possibility that the Hesslan form is semi-definite, but not

definite. In this case the test fails.

These conclusions are equally valid in higher dimensions. The quadratip
terms in the Taylor series for F at a oritical point, again leaving out the

factor 1/2, constitute the Hessian form of F. Its matrix-is

M My - Fp
Fp B3 o By

e s s s e s e e s e

X} X « e o X}
Fnl Fn2 an

all derivatives being evaluated at the critical point. This matrix 1s known

as the Hessian matrix. Assuming F 1is 02, it 19 symmetric.
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Although our discussion involved reference to terms in the Taylor's series
.f'ar F  of degrees higher than two and hence to derivatives of F of orders
high;‘r than two, we can prove the statements ;bovo on the hypothesis that F is

merely 02 .

%.4.12 Theorem. lLet E be an open set in E® andlet FP: E IR bea Co-

function. Suppose a is a eritical point for F and that the Hessian form
for F at a is H. Then
() If H is positive dofinite, a is a strict local minimum point for F.

(b) If H is negative definite, & is a strict locel maximum point for F.
(e) If H takes both positive and negative values, a is neither a

maximum por & minimum point for F but some kind of saddle point.

Proof. Let a =< a,, 8, ..o, 8 > Suppose H is positive at the point

K3 <kyy Ky eeny k>

Consider the function ¢ of one real variable defined by
Pt) = Flay +thy, 8y +thy, ooy 8+t ).
(This 18 F along the parametrized line t > a + tk.) We lmow that
P'0) = O kF ) =0
because a 1is a critical point of F, and
") = Z kikjpij(‘) = H(k) > 0.

Hence < has a strict local minimum point at 0. This means Pp(t) > @0)

for all sufficiently small but non-zero t. But this is the same as
F(a + tk) > F(a).

Thus, F takes values larger than F(a) at points arbitrarily near te a.
Hence, & 1s certainly not a local maximum point for F.

Similarly, if E takes a negative value somewhere, there is & line through
the origin along which F has a strict loecal maximum at the origin. Hence
the origin is not a local minimum point for F.

This proves (o).
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We next prove (a). Assume H 1is positive definite. Then the Hessian
matrix M is positive definite. According to theorem 6.3.12, there 13 a positive
‘number €  such thats
. If M' is any n x n symstric matrix, each of whose entries is

within € of the corresponding entry or‘ M, then M' 1is also positive

definite. ‘

Because the second order partial derivatives of F are all oconiinuous by
hypothesis, we can ochoose 5 8o small that 4f b 1s any point with ||b - afl< &
then b€ E and

|F;3(b) - pﬁ(a)] < €
for all i and J.

Now consider any point © =<0y, Oy .-+, én > with 0< [je-a] <&.

By Theorem 8.4.5

Fe) = Pa) + _i)_: (0444 ) (o0, By (6)

where b is some point on the segment joining a to o. (Remsmber the first
qlegreo terms ars zero because a 1is a oritiesl point.) This point b will
satisfy ||b - afl < & and hence the matrix

Fﬁ(b) Fﬁ(b) L] F]'J"(b)
Féi(b) Féé(b) LB Fét"(b)
FI®) EA) - e E(®)
is positive definite. The sum in (11) is the quadratic form corresponding to
M' evaluated at ¢ - a. Since o - a £ 0, the sum is positive. Hence
Ple) > Fla).

This proves that a dis a striet local minimum for F. This finishes the proof
of (a). The proof of (b) is similar. []
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Remark. It is tempting to use the reasoning of the first part of the proof to
prove (a) as follows. If H 1is positive definite, then F has a strict local
minimum at a along every straight line through a. Hence a is a local
minimum point for F.

That this last conclusion is a non-sequitur can be seen from the following
example. Let

F(x,y) = (7 - )y - 3x°).

Then F has a eritical point at the origin and a striet local minimum point at
the origin along every line through the origin. Nevertheless, the origin is not
a local minimum point for F. In fact,
F 1s negative everywhere in the region

S between the parabolas y = x2 and

F>0 .,
y = 3x2. Hence F has a strict local F< <0

maximum point at the origin along the F>0 F>0

parahola y = 2x2. The trouble is that

no line through the origiﬁ oan penstrate
S immediately.

The Hessign form of a function at a critical point can be classified
according to the scheme of §6.3. Properties of the Hessian form are often
ascribed directly to the critical point. Thus a critical point is said to be
degenerate if the Hesslan form is degenerate. The criterion for this is the
vanishing of the Hessian determinant (le., the determinant of the Hessian

matrix). The index of a critical point is the index of the Haéuian form at

that point.
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Suppose F is a cz-function on X' and a is a critiecal point of F.
Let H be the Hessian form for F at a. Let Pl be the - a-coset of some
linear subspace P of b (1e., Pl is a "flat" space through a). Consider
P reatricted to the set Pl. Then a is still a critical point for F and
1t is easy to check that the Hessian form for the restricted F at a 1is just
H restricted to P. (For P of dimension one, this was established in the
first part of the preof of 8.4.12. The argument given there extends to the
general case.)

Now suppose P has been so chosen that H restricted to P ?s positivr
definite. Then F restricted to P has a strict local minimum at a relative
to Pl. By the same argument, if N 1s a linear subspace on which H is
negative definite, and Nl is the a-coset of N, then F has a striet

local maximum at a relative to Nl

To make practical use of Theorem 8.4.12 we need some way to decide whether
the Hessian form is positive definite, negative definite, or indefinite. This
is provided by Theorem 6.3.8. We illustrate with an example.

Example. Find the critical points of the following function on 13 and djsocuse

their nature.

f=x2+:w+y2+xz+z2-i1§z3.

The first aorder partial derivatives of f are

2x +y + 2
X + 2y

x+2¢-%zz.

The critical points are found by setting all three of these expressions equpl to
zero and solving for x, y, and 2. The first two equations lead to x = - 2z/3,
and we find that there are two critical points <0, 0, 0 > and <—%§, %, 8 >.
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The Hessian matrix (at a general point) 1s

2 1 1
1 2 0
1
1 0 2-32.

The sequence of determinants (as in 6.3.8) 1s 1, 2, 3, &4 - z.

At both ezdtiqal points the Hessian determinant is not gero, so both
eritical points are non-degenerate.

At the first critical point, < 0, 0, 0 >, the sequence is 1, 2, 3, 4.
There are no changes of sign, so the Hessian is positive definite and there is
& strict local minimum point. ) ‘

' At the second eritical point, < - %, %, 8 >, the sequence 18 1, 2, 3, - 4.
There 1s one change of sign so the index is one. The critical point is a saddle
point. The Hessian form is positive definite on the linear subspace spanned

by <1,0,0> and <0, 1, 0 >, that is the x-y plane. Correspondingly,

f has a strict local minimum at the critical point relative to the plane

whose equation is 2z = 8. Since the Hessian form is negative definite along

the z-axis (=sp {< 0, 0, 1>} ), £ has a strict local maximum at the critical

point along the line x = - 16/3, y = 8/3.



8-78

Exercises

1. Pind thé critical points of the following functions on I and discuss

2,

5.

their nature.

@ Log st ® 2,y
(¢) sinx +siny (d) xy+tanx+tany

Do the same for the following functions on m3

(o) xz +y2+312-213‘

) 1,1.1
LRS- R

) ©+xy-xm+y -2l

4

Show that x7 + x°y +y° has a degenerate critical point at <0, 0 >

that is, nevertheless, a striot global minimum point.

Caloulate the Hessian form of the example on page 8-75 and show that it
?

is degenerate. Note that the anomalous behavior appears along curves

tangent to the subspace of degeneracy of the Hessian.

The Hessisn form of a cz-fmetion can be defined at any point as the

second degree terms in the second Taylor polynomial. Discuss, in terms

of the Hessian form, whether the graph of a function F 1lies above or

below its tangent plane near the point of tangency.

If £ 4is a quadratic form, show that at every point the Hessian form of

£ is 2f,

Suppose f 1is Cz on all of m“ and at every point the Hessian of f

is positive definite. Prove thatt If v and w are two distinot points

in B and 0<t<1l, then
£(tv + (L-t)w) < t£(v) + (L-t)r(w).

A funotion satisfying this inequality is called strictly convex.
Reduse to the one-dimensional ocase.

Hint:
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8.9 A geometric view of functions, the implicit funetion theorem.

By consideriny the 1deas of level lines and level surfaces, we can acquire
valuable insights into the nature of functions of several variables. Those-
ideas are particularly useful in un;derauncung the complex of results known
cqllactively as the implicit function theorem. Roughly, this tells us when we

can "solve" the equation F(x,y) =0 for y in terms of «x.

8.5.1 Level lines. Suppose f 1is a real-valued function defined on a plane

(or an open subset of a plane). For each real number o, consider the set
{p+ £lp) = o}.

If f 1is a reasonable function, these sets will be smooth curves, with perhaps
an occasional singularity. Curves corresponding to nearly equal values of
will be more or less parallel. These curves are called level curves for . f,
sometimes contour lines or gontour curves. Functions of two variables are
often depicted by drawing a few representative level curves.

Contour lines are often used on maps to show the elevation of the terrain.
The one hundred feet above sea level contour line shows where the shore would
be if the sea rose one hundred feet. Maps usually show contour lines for equal
intervals of elevation, say for one hundred feet, two huyndred feet, three hundred
fest, ete. The spacing of the contour lines on the map then tells whether the
hills are steep or gentle. If the contour lines are close togethér it means that
we 2o up & lot in a short linear distance. The hills are steep. When the
contour lines are far apart, the hills are gentle. Similar considerations apply

to the level lines of a function,

The o¢-level curve for a function ean be obtained from its graph as
follows: Find the curve where the graph intersects the horisontal plane

2 = o and "drep® this curve onto the x.y plane.
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Aboves Surface cut by equally spaced horizontal planes.

Below: Corresponding level lines in the x-y-plane.

If £ 1s a first degree function on a plane, its level curves are all
straight lines. Geometrically this is because the graph of f is a non-
horizontal plane and 1t will meet any horizontal plane in a line. Analytically
this can be seen as follows: In coordinates f =a +bx + ¢y where b and

¢ are not both zero., A level curve for f has the equation

a +bx +oy = &K,
and this represents a straight line. Moraaver. the lines corresponding to .
equally spaced levels are equally spaced parallel lines. The level difference
divided by the distance between level lines is the tangent of the angle between
the graph of f and the horizontal plans.
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When we turn to more complicated functions, the level curves are ususlly
some sort of smooth curves. Nearby level curves are ususlly in some sense
parallel. This concept is a bit vague, but it is clearly illustrated in the
following example.

Consider the function x2 + y2

on the plane. Its level curves for

positive values are concentric

oircles. The origin is a degenerate
level curve. If we look at this

family of curves at a point p

other than the origin with a high-

powered microscope, the curves will
appear to be parallel straight lines.
The field of view would be small but

2.8

much magnified. We would see cir- 3.0
cular arcs of such large apparent 3%
radlus that they would look straight. 2 2

Level curves for x +y .
This is almost equivalent to saying Above: Levels 1, 2, 3, and 4.
that x° +y° is differéntiable Below: Ten times magnified view of

small inset circle, showing

at p. A function is differentiable additional level curves.

at p 1if, when looked at in a

sufficiently small neighborhood of p, it becomes indistinguishable from a
first degree function. It is important, however, that p not be a oritical
point. No matter what magnification we use, if we look at the origin ( a
eritical point for x2 + yz) we will ses the degenerate level curve surrounded

by concentric circles.

The same basic ideas apply to functions of three variables. If f is a
real-valued function defined on spacs, the level sets

{p:2p) = x}
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© will usually be smooth surfeces and are therefore called level surfsces. The
level surfaces for a first degree function will be parallel planes with equally
spaced values of o ocorresponding to equally spaced planes. For more com-
plicated, but still differentiable, functions the level surfaces will be
curved, but if viewed with a microscops they will appear like parallel planes,
the resemblance increasing as the field of view diminishes and the magnification
increases, all provided we are not lookdng at a oritiecal point.

Level surfaces for a function on three-space are partiocularly valuable
because thay oan bs directly visualised whereas the graph of sush a function
cannot (because it takes four dimensions).

The idea of level surfaces remains sensible for functions of more than
three variables even though we can no longer visualise them. "I'ho level surfaces
for a function of four variables will be curved three-dimensional surfaces in
four-space. In thinking about such things we are forced more than ever to
rely on the analytic definitions. Because the analytio definitions serve so
well to desoribe our intuitive conceptions of curves and surfaces in three-
space, we can fesl reasonably confident that our perceptions of thres-space
will provide valid insights into the naturs of higher-dinmensional space.

We shall give a geometric argument that shows that level lines are smooth
curves. Suppose 3 13 a smooth surface in three-space. By this we mean that
S has a well-defined tangent plane ’1“=l at every point q and ‘l’q moves
continuously with q. Let H be a plane that outs S 4n a curve C. We
would like to show that C 41s a smooth ourve. Suppose q 45 a point of C
such tbni ‘1'.cl £H Then HN Tq is a line. Since S hugs closely to Tq
near q, an'rq will be tangent to HN S =C at g. This shows that
C has a tangent at every point q except those for which rq = H. Moreover,
since rq moves continuously with q, HN T  moves continuously with q.

q
_rhug, C 1s a smooth ocurve (has a continuously turming tangent 1ine) as long

a8 we avold points at which H = Tq’
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An analytical version of this argument will be part of the proof of theorem
8.5.12

Suppose now that S is the graph in ]R3 of some cl -function F : ]Rz‘—>]!.
If q 1s a point of S, say q =<a, b, F(a,b) >, the equation of the plane

Tq tangent to S at q 1is
z = Fla,b) + Fi(a,b)(x -a) + Fé(n,b)(y - b).

Since the coefficients here ars continuous functions of a and b (because

F s Cb), T,

cutting S. If q € HNS, the condition that 'I.‘q #H is that at least one

moves continuwously with q. Let H be a horizontal plane

of the coefficients F)(a,b) and Fi(a,b) is not zero; that is
dF(a,b) £ 0.

Now the curve C = HN S 1is, except for being "dropped” onto the x-y-plane,

a level ourve for F. We conclude that the level curves for F are smooth

curves except possibly at points where dF vanishes.

"Now consider an arbitrary point q of the surface S and its tangent
plane Tq’ Let L be any line in Tq passing through q. We can choose the
plane H so that HN Tq =L. Then L will be the line tangent to H NS at
q. Hence we conclude that every line through q in ’l‘q is tangent to some

smooth curve in S.

8.5.2 The gradient of a function. Let f be a real-valued Gl -function defined
on an open set E of an inner product space V. Then df is a differential
form on E, that is, a function from E to V*. If coordinates are at hand,

df becomes a functions whose values are row vectors. There is no convenient
way to visualize a row vector geometrically. However, because of the inner
produet in V, it is possible to replace a row vector by a column vector, and

a columm vector has a simple gecmetrical representation.
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According to Theorem 5.4.18 (p. 5-66) for each linear functional g on

V there is a vector w in V such that

(Vvev) glv] = (w,v).
Now df(p) 4is a linear functional on V, so there is a member of V that
represents it. This vector is ealled the gradient of f at p. We write it
V£(p). (The symbol *V* is pronounced "del".) The gradient of f is then

a function Vf from E to V. It is a vector field in the sense of 7.4.1.

The defining relation for the gradient is

(Yvev)y de()lvl = (Ve(p), v)

and the chain rule for computing the derivative of fog where g 1s a

parametric curve in V becomes
(£og)* (t) = (V£(g(t)), g'(t)).
(See 8.3.35.)

How do we find this vector field computationally? If we are using ortho-
normal coordinates, just transpose the row vector df to obtain the column
vector Vf. Thus, Vf 4s the column vector whose components are the
partial derivatives of f, Aif the coordinates are orthonormal. To see this,
note that, if coordinates are ortho-normal, the inner produet of two vectors

v and W is the same as the matrix product vT W . For example

1 i | A1
( V2l , [*2 ) = VW H VN, + Vgig = vy v, v3||~ w2
) Wy vy

The stress on orthonormal coordinates is quite necessary because when other
systems of coordinates are used, the gradient has quite a different appearance.
(See exercises 15 and 16.) It is important to realize that the gradient
vector field of a function is independent of coordinate systems, it is only
its representation that changes with the coordinates. Thinking in terms of
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orthonormal coordinates, we see right away that the gradient of a Cl-fmction

is a continuous vector fleld.

Why bother with both the differential and the gradient of a function?
We could certainly get along with just one of them. Since the gradient
is a vector field, we can visualize it as an arrow diagram as on page 7-54. This
can be very helpful. More important, however, are the many physical inter-

pretations of the gradient. We shall touch briefly on these below.

The gradient is defined only when an inner product is available. Of course,
we can always impose an inner product on a vector space, but if an inner product
is imposed that is not germane to the situation under study, the gradient of a
function is not likely to be useful.

Let us find the relation betwesn the gradient vector field of a function
and its graph and level curves. Suppose f is a real Cl-fmetion defined on
a plane, and let p be a point of the plane. The directional derivatives of f
at p (p. 8-36) are the derivatives of f along unit veotors u. They are
given by
ar(p) [u] = (V£(p), w).
Since [[uf =1, the Cauchy-Schwarz inequality tells us that

-IVeEl < (Vep), w) < IVeEM .

with the upper equality holding if and only if ¥V f(p) and u have the same
direction. Hence, of all directions at p, the one in which f increases
fastest is the direction of WVf(p), and |IVe(p)ll 4s the directional

derivative in this direction.

Think of the graph of f as a three-dimensional landscape over the x-y-
plane. Let q be the point of the graph over the point p of the x-y-plane.
Then q 1s a point on a hillside. Our last result says that the gradient
vector at p points in the direction of the steepest ascent of the hill at q,
while the length (norm) of the gradient tells how steep the hill is. If the

gradient is zero at p, there is no (instantaneous) rise or fall of the hill
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in any direction. Such a point could be a hill-top (maximum point for f)

a pit-bottom (minimum point for f), or a pass between two hills (saddle point

for f). Note that the gradient of f is zero exactly when the differential of

f 1is zero, so the gradient vector vanishes exactly at the critical points of f.

Along a line through p orthogonal to V f(p) the directional derivative
is zero. This means that f 4is not varying (instantaneously) along this line
In terms of hills it means, if the steepest line on a hill is North-South, the
slope is zero in the East-West direction. In the very simplest case, f is
a first degree function and its graph is a non-horizontal plane. The level
curves for f are parallel lines. The gradient of f is a constant vector
field (ie., V£(p) is independent of p) perpendicular to these lines. The
gradient vectors are always orthogonal to the level curves. Suppose t > g(t)
is an are.length parametrization of the level curve through p with g(0) = p.

Then fog 1is a constant function, so
(£og)"' (0) = (V£(p), £'(0)) = 0.

But g'(0) 1is a unit vector tangent to the level curve at p. This shows that

the gradient vector at p is orthogonal to the level curve through p.

We can now make more precise our previous claim that nearby level curves
are nearly parallel. Suppose that V f(p) £0. Since V£ is a continuous
vector field, in a small neighborhoed of p, YV f is almost constant. This
implies that all values of Vf near p are almost parallel to one another.
(¥ote that this would not follow if WVf(p) = 0.) Hence the level curves,

being at each point orthogonal to the gradient at that point, are almost parallel

near p.

For a funoction f defined on three-space the results are essentially the
same. The gradlent vector at p points in the direction in which f increases
fagtest. Assuming YV f(p) £ 0, the level set for f through p 1is a smooth
surface near p and its tangent plane at p 1is orthogonal to V f(p). All
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the planes tangent to level surfaces of f at points near p will be nearly
parallel to one another and this will give the levsl surfaces themselves the
appearance of being parallel. If f(p) =0, p is a critical point for f,
and the level set for f through p need not be a smooth surface at all (in
fact, usually it will not be, as we shall see). As before any smooth curve
lying in the level

passing through p and lying in the level set of p will have its tangent
vector orthogonal to V £(p), but this tells us nothing since V f(p) = 0.

8.5.3 Level curves and surfaces near a non-degenerate critical point. Suppose
f 1s & real-valued Cl-function defined on a plane. We have seen that, near
a point p where df (or Vf) does not vanish, the level curves are smooth
and roughly parallel. Let g be the first Taylor polynomial for f at p
and think of the level sets for g. Since g 1is a first degree function, these
level sets are a family of parallel straight lines. The level curves for f
_itself can be obtained by bending those for g slightly. The level curve for
g through p 1s the line tangent to the level curve for f through p. By
slightly bonding‘ this 1line we can make it (locally) the level ourve of f.

If we think of the plane as made of rubber, it is easy to seo how we can
deform a small plece of the plane near p so as to make the level lines for g
coincide with the corresponding level lines for f. There is, in fact, a
theorem that makes this statement quite precise.

The situation in three or more dimensions is similar. let f be a real-
valued Cl-tunction, let p be a non-eritical point for f, and let g be
the first Taylor polynomial for f at p. It is possible to deform space
slightly near p, with the distortion getting less and less as we approach p,

so that the level surfaces for g, which are planes, b the corr ding

P

level surfaces for ¢f.
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Now let f be a Cz-ﬁmction, let p be a non-degensrate critical point
for f, and let g be the second Taylor polynomial for f at p. Again it
is possible to deform space near p slightly so that the level sets for g
become those for f.

Suppose for a moment that space is two-dimensional (Le., a plane), and to
avold excessive notation, suppose the critical point is the origin and that f
vanishes there. Then the second Taylor polynomial for f at the origin is
Just a quadratic form, g.

If g 4is positive definite, its level sets are a one point set, the origin,
surrounded by concentric ellipses. Therefore, near the origin the level sets
for f consist of a one point set, agaiﬁ the origin, surrounded by curves that
are slightly deformed concentric ellipses. The one point level set through the
origin is consistent with the fact that f has a strict local minimum at the
origin. If we look at a neighborhood of the origin with a microscope, as the
magnification increases, the more nearly will the level sets for f resemble
the level sets for g.

If g i3 negative definite, the picture is essentially the same. The
level sets for g are the origin and concentric ellipses (The ellipses now
correspond to negative values_ of g.), while those for f are the origin
and slightly deformed concentric ellipses.

Now assume that g has index one. Then the picture is quite different.
The level set for g through the origin consists of a pair of crossed lines.
Each other level set consists of two disconnected parts and is a hyperbola.

We can get the level sets for f by deforming the picture slightly, keeping
the origin fixed. The level set for ¢ through the origin will consist of

two crossed curves, each tangent to one of the lines of the level set for g.
The other level sets for f will resemble the hyperbolas for g. They will

be disconnected near the origin, but they may be reconnected at some remote point.
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An example will show how to use these facts. The funotion y2 - xz(x +3)
has two oritieal points in the plane, both non-degenerate. At < -2, 0 >
it has a strict local minimum point with
value -4. This is shown in the figure
as a dot. At <0, 0> there is a

critical point of index one. The level

locally of two orossed curves. Since the

set through the origin therefore consists @

2

second Taylor polynomial is y - 3:2,

the curves are tangent to the two lines

given by yz - 3x2 =03 that is,

y = 1/5 x. It turns out that the crossed

curves eventually join together to make a single curve that crosses itself.
The figure also shows the level curves for values + 1 and - 1. The former
is connected, while the latter consists of a closed curve surrounding the
minimum point and an infinite are in the right half plane.

From this information it is easy to describe all the level sets. For
values less than -4, there will be one arc in the right half-plane. At level
-4 the minimum point at < -2, 0 > appears as well. For values between -4
and 0, there will be a closed loop surrounding the minimum point and an arc
in the right half-plane. These two parts coalesce for value 0 to make the
curve that crosses itself at the origin. The level sets for all positive values

will be roughly like the one shown for +l.

The values taken by f at its critical points are called critical values.
Generally speaking, the level sets corresponding to nearby values have the .nmo
rough shape, but there is an abrupt change of shape when a critical value is
passed. In the example, the level sets were connected for values less than ity
but a new piece appeared as we passed the critical value -4. The level sets
remained in two pieces until we got to the critical value 0, at which point

the two pleces coalesced.



Gross changes in shape can also ocour when the level curves "go to infinity.»
An example of this phenomenon is given by the function

2x

1+ ;2 + ;2

There are critical points at < -1, 0 >

and < 41, 0 >, both non-degenerate.
The former is a minimum and the latter ///——~\\\
a maximum. The level curves are all ) /2555‘\\\

N\ \ Ji
circles except the line x = 0. At this // \ 7
level (value O) the shape of the level //////' :\\\\\\
curves changes abruptly although there

is no critical point.

In general if you can find the level sets for the critical values of f,
the rest can easily be sketched. All other level sets are curves with no
singularities. Between two consecutive critical values the level curves must
make a smooth transition from one critical level set to the other. This in
itself 1s usually enough to determine their appearance to a satisfactory level

of accuracy.

What we have done applies only to non-degenerate critical points. Near
a degenerate critical point the level sets may have a very complicated structure.
In fact, no complete analysis of the structure of functions near a degenerate

critical point is known.

Level surfaces for functions defined on three-space are in a way even more
important than level curves in the plane, because level surfaces provide the
only way we can visualize functions on three space. Fortunately, the ideas
are essentially the same as in the plane. We stick to functions of class 02
at least with only non-degenerate criticsl points.

There are basically only two kinds of eritical points. Those of index
zoro and three, corresponding to minimum and maximum points of f, are one

kind, while those of index one and two, corresponding to saddle points, are the
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other. At a oritical point of index zero or three there is a one point level
set surrounded by slightly deformed ellipsoids.

As we saw in chapter six (p. 6~92 ff) the criticsl level set for a quadratic
form of index one or two is a quadric cone. The region inside the two nappes
of the oone is packed with hyperboloids of two sheets, one sheet in each nappe.
The region outside the nappes is wrapped with hyperboloids of one shest.
If the index is one, the hyperboloids inside the nappes correspond to the values
less than the critical value. If the index is two, these hyperboloids corres-
pond to values greater than the critical valus. According to the general
result the level sets for f will be slightly deformed versions of those for
its second Taylor polynomial. In particular the critical level set for f
will be a deformed quadric cone. Although otherwise a smooth surface, it

pinches down to a point as it passes through the eritical point.

The actual determination of the level sets for a given f may be quite
a difficult task, but as in the case of two variables it is easier if we keep
in mind the general facts about their structure. The first thing is to find
the oritical points of f and then the level sets corresponding to the
oritical values. All remaining level sets are smooth surfaces with no singu-
larities. We illustrate with an easy example.

Let f = yz P xz(x +3). There are critical points at < -2, 0, 0 >
and <0, 0, 0 >. They are both non-degenerate and have indices 0 and 1,
respectively, with critical values -4 and 0. If we fix x, that is,
confine our attention to a plane of the form x = A, we ses that the level
sets become circles with center on the x-axis. Therefore the level sets are
all surfaces of revolution with axis the x-axis. In fact they are the
surfaces obtained by revolving the level curves of the example of page 8-89.
The O-level set is worthy of particular note. It is a surface with a bubble
pinched off at the origin. The conical point at the origin is characteristic

of the critical point of index one.
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8.5.4 Fall lines. Let f be a function defined on the plane and let us
consider once again the graph of f as a landscape spread out over the
x-y-plane. If a drop of water is spilled on a hillside it will run down the
hill taking the steepest path down. Let us neglect any tendency of the water
to "coast" because of acquired velocity. Then the path of the water will
always be exactly along the line of steepest descent. The path of the water
projected down on the x-y-plane will always have the direction of the
negative of the gradient of f. This condition becomes a differential equation
satisfied by the projected paths that in reasonable cases completely determines
the paths. The paths are called fall lines for f.

Suppose x and y are cartesian coordinates in a two-dimensional inner
product space V. let f = x2 - y2 We shall find the fall lines for f.

We seek parametrized curves g : R-— V such that, for any t, g'(t)
the tangent vector to the curve has the direction of -Vf(g(t)). while we
are at it, let us make
(5) g'(t) = - Ve(glt)).

This means we are prescribing the rate at which the fall line is to be described
as well.

Write g in components, say

u(t)
g(t) = .
v(t)
Now 2x
f =
-2y
so (5) becomes
l u'(t) - 2u(t)
vl Il zve
Therefore
u(t) ae'Zt
v(t) beZt
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for sultable constants a and b which are determined by where the motion
starts. We can eliminate t here and conclude that the motion takes place

along the curve with equation
xy = ab.

If ab £ 0, this is a hyperbola. It falls in two parts and the motion takes
place along just one of them. The fall lines of f are therefore, for the
most part, half hyperbolas. A motion that starts at the origin will be
stationary, and a motion that starts elsewhere on a coordinate axis will

take place on a half line from the origin.

The curves we have found have the property that at every point they are
orthogonal to the level curves of f. They are therefore also known as the

orthogonal trajectories of the level curves.

8.5.6 Potential fields. It frequently happens in physics that a body has
potential energy by virtue of its position alone. The function that tells the
_potential energy of a given body in a given place is called the potential
function. There is always a tendency for bodies to move so as to reduce
their potential energy, so a body in a potential field will experience a force
that tends to move it as quickly as possible to a point of lower potential
energy. The magnitude of this force is proportional to the rate at which
the potential energy falls with distance. Hence if units are chosen corrsctly,
the force is exactly the negative of the gradient of the potential energy
function. Many, but not all, of the force fields that arise in physical
problems are the negative gradient of some potential function. Force fields that
do arise in this manner are called gonservative, because the principle of the
conservation of energy (potential plus iinetic) applies to bodies moving under
the influence of such foroe fields. (It does not apply to other force fields
unless reckoning is made also of the energy necessary to maintain the field.)
An extramely important example of a conservative force field is the

gravitational field surrounding a heavy body. (See exercise 10,)
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Exercises. Assume throughout that x and y are orthonormal coordinates on

a plane and x, y, and 2z are orthonormal coordinates on three-space.

1.

10.

Find a parametric representation for the line normal to the surface in space

given by x3 +? +sin xyz =0 at the point <1, -1, 0 >.

Find an equation for the plane tangent to x* - xyz + 2y3 = 222
at the point < 1,1, 1 >,

At what points of the plane does the gradient vector of xzy + 2y2 point
toward the origin? (We think of the gradient vector of f as running from
v to v+ Vf(v). )

At what points of the plane are the level curves for x3 + y3 perpendicular

to those for xy ?

At what points of the plane are the level curves for x3 - y3 tangent to

those for x2 +xy ?

Show that, although x3 + y'3 has a degenerate eritical point, all of its

level sets are in fact smooth curves.

What is the maximum value of the directional derivative of the function

X

1+x2+y2

considering all directions at all points of the plane?

If the gradient of a function on three-space always points towards the origin
(see ex. 3.), show that the function is constant on spheres with center at
the origin.

Find the fall lines for the function x> + 2y2.

The potential energy of a body of mass m in the gravitational field of
a fixed body of mass M is -mm//: where O 1s the distance between them.
Show that the gravitational force on the first body is the negative of the

gradient of this potential function.



11.

12.

13.

14,

15.

16.
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Is the set defined in three-space by
x3 + y3 +8sin xyz =1
everywhere a smooth surface?

Sketch the level curves in the plane for

(a) sinx +s8iny (e) 2]. .2
x° +y
(®) —1-—-—+2x
x° +y

Suppose f is a real valued function defined on all of the plane and
that all of its level sets are straight lines. Show that therse are

numbers a and b and a function g of one variable such that

= g(ax + by).
What happens if f 1s defined on less than the whole plane, but all its
level sets are straight line segmentst?

The plane curve defined by 2:9 + uxz + 4xy + uyz =1 crosses itself.

Where is the crossing and at what angle does it cross?t

Suppose bl‘ bz’ ceey bn is a basis of an inner product space V and
X Xyy coey X, arve the coordinate functions on V associated with this
basis. Let M be the matrix of the inner product referred to this basis.
Show that in this coordinate system the gradient of a Cl-fmction f is
given by )

f  2f

o ;_’f‘n”T

Suppose v and w are continuous vector fields defined on a subset E
of two dimensional inner product space V. Suppose that v(p) and w(p)
are linearly independent at every point p. Show that any continuous
vector field u on E can be written u =gv + hw (pointwiss) where

g and h are continuous functions from E to R. (Continued next pags.)
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When computations are done in a two-dimensional inner product space
using polar coordinates, it is customary to refer vector fields defined on

E =V - {origin} to the basis vector fields X and ©  (these are usually

-~

written in bold-face type) defined as follows: For p€ g, S(p) is
the unit vector with the direction of pj ie., r(p) =p/ fiefl.  (Remember

p itself is a vector.) §(p) is the unit vector obtained from L(p) by
rotating it 90° in the positive direction.

Show that

cos O - 8in©

r =
-

§.—.
sin ©

cos &

where the column vectors are with respect to the usual Cartesian coordinates.
Show that the gradient of a Cl-function £ 1is given by

i o

1
Ve = =
by 54’[’5

i

8.5.7 The implicit function theorem. Given a function F of two real variables

the question ofiten arises, can we solve

F(x,y) =0
for y ? The implicit function theorem gives us valuable information about this
problem. It is important to get in mind, however, what exactly we mean by
fsolving for y."

Consider first some particular cases.
(8) x3+xy+5x+4y=o
7
9) y +y-x=0

(10) siny-x =0
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It is easy to solve (8) for y.

. D

X +4

provided x £ <43 thers isno y satisfying (8) if x = -4. Here we have
solved for y in the best possible sense. We have a formula for y in terms
of x using only the familiar operationa. We certainly cannot expect to do
this well in a general context.

Equation (9) is more difficult. Fix an x temporarily. As y increases
from - o to + m, y7 +y also increases from - o to + . Hence, by
the intermediate value theorem, there is a unique value of y such that
y7 + ¥ = x; morsover, this value is unlque. Hence for each real number x
there is a unique y such that (9) is true. This determines y as a function
of x. In technical terms, { <x, y >3 y7 +y-x=0) 4s a function. Not
a familiar function to be sure, but a function. We offer no way to compute it
other than to solve (9) afresh for each new value of x using your favorite
algorithm for finding the roots of polynomial equations. This is the kind of
information that the implicit function theorem givest there exists a function
that solves the given equation. It will also tell us that the solution function
is differentiable. For example, the solution of (9) is c®

Another complication arises with equation (10). For some values of x
there are no values of y that satisfy (10); for others there are infinitely
many. To express y as a function of x means that we must assign a unique
value of y to each x. So we arbitrarily discard values of y outside
[-m/2, w/2]. Por each value of x in [-1, 1] there is a unique y in
[-w/2, 7/2] such that (10) holds. This defines a real-valued function with
domain [-1, 1]. This has bescome a familiar function, usually written arcsin.
When we write

1) y = arcsin x

we have solved (10) for y, but only in a limited sense, besause there are
many pairs < x, y >, for example, < 0,1 >, that satisfy (10) but not (11).
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We must be prepared for this possibility in any general theorem on solving for y

The best way to understand the theorem is through level ssts. Given F,
the set

S={<x,y>t F(x,y) =0 }

is just the O-level set for F in Rz. For a general F there is no guarantee
that . S 1is not empty. Hence the theorem will assume that we have a point
<a,b> of 3 in hand. Then we ask, 1s the part of S near < a, b> the
graph of a function? We have given gecmetric arguments to show that near
<a,b> S is a curve provided dF(a,b) £ 0. Now we shall give an analytic
proof that it is the graph of a function provided Fé(n,b) Fo.

If a plece of S is the graph of a function g, then

y =g(x)

can be regarded as the result of solving F(x,y) =0 for Y in terms of x.
The theorem will not say how large the domain of g will be, only that it will
be some interval around a. There will be no claim that g can be expressed in
terms of familiar functions. Although we cannot claim that our solution is
unique globally, it is the only solution that is continuous and satisfies
g(a) = b,

8.5.12 Theorem. Let E be an open set in Rz and let Ft: E—R be a

c*-function. Suppose <a, b >€ E, F(a,b) =0, and Fy(a,b) # 0. Then:

Existencet There exists an open interval I in R such that a€ I and

& Cl-function gt I >R such that g(a) =b and

(Vx€1I) Fix,glx)) =0.

Uniquenesst If J is a subinterval of I gontaining a and h:J— R
is a continuous function such that h(a) =b and

(Vxe ) F(x,h(x)) = 0,

then h and g agree on J.
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Proof. Since Fé (a,b) £ 0, we shall assume that Fé(a,b) is actually positive.
(If it is negative, consider the funoction - F  instead.) Set Fé (a,b) = 2,
where o« >0. Since F, is continuous, there is an open disk A about
P =<a, b > such that Fé(x.y) >0l forall <x,y>€ A. Say the radius
of A is 28,

Consider the figure; some of the notation is defined there.

P=<a,b>

R=<a,b-58> R' =<a, b+8>

S=<a-§b-8§> 8 =<a-g b+8>

T=<a+g b=56> T =<a+g, b+é>

Z=<x,b-5> 2 =<x, b+ 5>

Because Fé is striectly positive on A, F is strictly increasing along
the segment RR'. Since F(P) =0, F(R) <0 and F(R') >0.
If € 1is a sufficiently small positive number then
8,8, T,and T are all in A,
F is negative at each point of the segment ST, and
F 1is positive at each point of the segment S'T'.
(The last two condtions by the continuj;ty of F.)

Choose any point x of I =(a -£, & +&). Then x 4is the abscissa of a
vertical segment 2Z'. We know that F(Z) <0 and F(2') >0, so by continuity
F(Q) =0 for some Q on the segment 22'. Since Fé is strictly positive on
ZZ', F increases striotly along Z2', so the point Q is unique. We define
g(x) as the ordinate of Q. Then F(x, g(x)) = 0.

This construction is valid for any x € I, so the required function

g t IR has been found. (It should be clear that the construotion of g can
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be given in purely analytic terms. The notation is just messier and the ideas
a bit harder to follow.) We must show that g 4is C', but first we shall

prove the uniqueness.

Suppose h 1s a continuous function defined on a subinterval J of I
satisfying h(a) =b and F(x, h(x)) =0 for all x€ J. We give an indirect
proof that h agrees with g.

Suppose for some x € J, h(x) # g(x). Then h(x) does not lie in
[b -8, b+ 8] because there is only one number y (namely, y = g(x)) such
that F(x,y) =0 and y€[b-6,b+ 5] . Say that h(x) >b + §. By the
continuity of h, there must be a point x' between a and x (so x' € J)
such that h{x') =b + § 3 that is, the graph of h crosses the segment S'T'
at <x',b+ 8> put F is positive at this point, so F(x', h(x')) £ 0,
contrary to the assumption about h. This proves that h(x) >b + § is
impossible. Similarly, h(x) <b - § is impossible, for then the graph of h
would contain a point of ST and at this point F is not zero. Altogether
this shows that h(x) # g(x) 4s impossible. Thus h agrees with g on J.

Now we shall prove that g is differentiable at a. In fact we shall

prove that
. Fi(a,b)
13) g (a) =- W .

Let F* be the first Taylor polynomial for F at <a, b >.
P (x,7) = (x - a)F(a,b) + (¥ - B)F}(a,b).
(Recall that F(a,b) =0.)

Because F;(a,b) #0, we can solve F*(x,y) =0 for y. Let the result
be y = g*(x). Then

Fi(a,b)
(14) g*(x) = = m (x~a)+Db
and
Qs) F*(x, g*(x)) =0

for all x.
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(To see the relation between this and the geometric argument of p.8-82,
temporarily introduce a third coordinate. Then 2z = F*(x,y) is the sequation
of the tangent plane Tq to the surface S given by z = F(x,y) at
q =<a, b, 0 > The intersection of Tq with the x-y-plane H 1is the line
L given by F*(x,y) =0 which is the same as y = g*(x). We shall prove that
g* approximates g near a in the sense of 8.3(16), p. 8-34, rewritten for
one dimension. This proves that L 1s tangent to the graph of g as we

claimed on geometric grounds.)

We want to show that |g(x) - g*(x)| goes to zero faster than |x - a] as

x—>a. Given 1 >0, we must find § >0 and prove the inequality
(16) lgtx) - g*@)] < yix - a]
for a1l x with |[x -a| < §.
First, choose { >0 so that
I<x,y>-<a,b>) <7 =

Q7)
|F(x,y) - F*(x,¥)] < lMQ-”< x,y>-<a, b>,

where

2
I-‘i(a,b)
.
Fé(a,b)
We can do this because F 1is differentiable at < a, b >.
Now let § be the smallest of &, & /M, and 28 /M.
Let x be any number such that |x -a| < §. From (14) it follows that
(18) lI< x, g*(x) >-<a, b>]| =M|x-al.

(Pythagorean theorem.) Now (18) and M]x - a] <MY < imply that we can take
¥y = g*(x) in (17) and get

|F(x, g*(x)) - F*(x, g*(x))} 5°‘—M'3>||< x, g*(x) > - < a, b>.
Using (15) and (18), this becomes

19) LR, g*x)] < anlx - af.
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From (18) and M|x - a] <M¥ <26, we deduce that < x, g*(x) >€ A .
Since |x - a|] < €, g(x) is defined and < x, g(x) >é A. Hence the segment
connecting < x, g(x) > to < x, g*(x) > ldes in A.

Recall that F(x, g(x)) =0 and apply the mean value theorem.

[F(x, g2(x))] = |F(x, g(x)) - F(x, g*(x))]|

[Fy(x, ©) (g(x) - g*(x)) |
(20)

Fy(x, ©)|g(x) - g*(x)|
 Jg(x) - g*(x)],

v

where O 1s between g(x) and g*(x). The last two steps follow from the
fact that Fé > o onall of A,

Comparing (19) and (20), we have
[g(x) - g*(x)] < nlx - a.
Since x was arbitrary except for the requirement |x - a| < §, this proves

(16). And this shows that g is differentiable at a with derivative given
by (13).

The argument just given applies with minor changes at any point x € I,
80 g 1s differentiable at any point of I with

@) ‘) F) (x, g(x))

X) T - mEmm——
& m(x, g(x)

As a differentiable funotion . g is continuous. Hence (21) shows that g'

is a combination of continuous functions with the denominator never zero, so

g' 1s continuous on all of I. We have proved that g is .o

8.5.21 Corollary. If F 4n the theoremis C (L <k<m), then g is
also ck

Proof. Assume F 1s C°. We shall show by induction on p that g is CP

for 1 <p<k. Suppose g 1s C° where p <k. Then (21) exhibits g' as
a combination of functions of class C° and G, Since p<k -1, this shows
that g' 1s CP. But then g s cP*,
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If k is finite, this gives us induction as far as k, and we conclude

g is Ck, If k 4is infinite, we conclude that g 1is cP for every integer

p. But this is what it means to be C°.[]

The theorem we have just proved extends to any number of variables. Since
the proof 1s about the same as for two variables, we shall only state the result
8.5.23 Theorem. Let E be an open set in K'** and let F: E—TR bea
Ck-function, l<k<ow. Suppose < 819 85y coey 8y b>€ E,

F(a)485,...48 ,b) =0, and Fn'*‘l(al,az,...,an,b) #£0. Thent
Existence: There exists an open ball U about < 81y 85y cc0p 8, > in
R and a c¥-funetion g * U IR such that g(al,az,...,an) =b and
(Y< Xy Xoy veey X, >E€T)
Py 4%y e e 09X 18 (%) 4 %5504 4% ) = 0
Uniquenesss [If V 1s a connected open gubset of U gontaining
<)y 8y, seey 8y > and h:t V—R 1is a continuous function such that
h(ay,855..453,) = b and
(y< Xy Kpy eees Xy >evV)
F(xl,xz,...,xn,h(xl,xz,...,xn)) =0,
then h and g agree on V. [

Once we know that the function g exists and is differentiable, we can

easily calculate its derivative using the chain rule. If we differentiate
F(xltxzo'--vxn’g(xloxzv"'oxh)) =0

with respect to x,, keeping the other x's fixed, we get

] ¢ .Y
Fj + Fn+1 SJ =0.

Hence
35 = - FB/Fn;, .

(21) is just a special case of this formula.
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8.6 Multiple integration.

The idea of integrating a function of one variable over a line interval
generalizes in a very natural way to give us integrals of a function of two
variables over a region in a plane and integrals of a function of three

variables over a region in space.

8.6.1 Volume under a surface. Although the definition of a multiple integral
is purely analytic it is most easily motivated by considerations of geometric

volume just as the ordinary one-dimensional integral is motivated by area.

Suppose that f is a continuous
real-valued function defined on the
plane. Let S be a bounded closed
region in the plane with boundary
consisting of a finite number of
smooth curves and corners. Such a
region we shall call an ordinary
region. For example, S might be a
semi-circle, as in the figure. We

agsume the f 1is positive at every

point of 3.

The graph of f will be a
surface in three-space. We want to
know the volume of the solid V whose
base is S, whose top surface is the
part of the graph of f lying over S, and whose side walls are vertical over
the boundary of S.

To find this volume we use the same reasoning as we used to find the area
under a curve. PMirst cut the region S up into a large number of ordinary

regions which overlap only along their boundaries. Call them Tl' '1‘2, cey Tn

1

3
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stands a solid W, with base T,, top surface part of the

Over 9ach Ti A "
graph and sidewalls vertical over the boundary of Ti‘

Since the T's overlap only along boundaries which have area zero,
Area S =Area'1‘l + Area '1‘2 + ... +Area T .
n

Similarly, the solids W,

y overlap only on surfaces which have volume zero, so

Vol V = Vol Wl + Vol wz + ... +Vol Wn.

Let us get inequalities for the volumes of the Wts. Since f is a
continuous function on the bounded closed set Ti' it has a maximum and a

minimum value on T,. Let these be M:l and m,, respectively. Then

m Area Ti < Vol wi < Mi Area Ti

because Wi contains a solid of fixed height m,

wi fits inside a solid of fixed height Mi standing over '1‘1.

standing over 'l.'1 and

Adding up these inequalities, we get
(2) 2 miAreaTiSVolvgz MiAreATi.

The left and right hand sums here are called the lower and upper Riemann sums,
respectively, corresponding to the subdivision of S. They are analogous to
the Riemann sums for a one-dimensional definite integral.
If S 4s carved up into sufficiently small pieces Ti’
right members of (2) will differ by very little, in fact we can make the difference

then the left and

as small as we please by making the T*s small enough. Hence (2) gives us a
means of caleculating Vol V as accurately as we please. Since the same limiting
process comes up in many contexts, there 1s a notation for the unique number
that fits between all the lower sums and all the upper sums. It is

e

It is called the double integral of f over the region S.
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Now we shall formalize some of these ideas.

8.6.3 Dofinition. A region in the élana will be called ordinary if and only if
it 1s bounded, closed, and its boundary consists of a finite number of smooth

ocurves and corners. This is not a standard term.

8.6.4 Area. The hardest part of the theory behind double integrals is the notion

of area. We shall assume that we can assign to each ordinary region a non-negative

number called its area in such a way that

(a) 1If an ordinary region S is subdivided into two ordinary regions
T and U which share only boundary points, then

Area S = Area T + Area U.
(o) If two ordinary regions are congruent they have the same area.
(¢) A square of unit edge has area one.
It is possible to prove that this can be done, and furthermore that it can be

done in only one way.

Once we have established or assumed the existence of ‘an area function we

can define the double integral in a purely analytie way.

8.6.5 The double integral. Let S be an ordinary reglon in the plane and let

f ¢+ S~ R be continuous.
For each subdivision of S into ordinary regions Tl' 'rz, ceuy Tn which
overlap only along their boundaries form tho Riemann upper sum
U(Tl, Tay <oy Tn) = 2 M, Area Ti
where Hi is the largest valus of f on T,, and ‘the Riemann lower sum
L(Tl, Tpy eoey Tn) = z m, Avea Ti
where m, is the least value of f on Ti'
It can be proved that every lower sum is less than or equal to every upper

sum, even when these sums come from different subdivisions, Moreover, by

choosing the T's small enough we can make
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U(Tyy Tpy eees Tp) = LAy, Ty veey Tp)
as small as we please. It follows from the nested interval principle (p. 4-21)

that there is a unique real number I such that
L(’rl, Toe ooey ) ST SU(T, Ty ooy T,)

for every choice of the subdivision Tl, TZ’ ceey Tn’ This number I is
called the double integral of f over S and denoted

Sﬂf dA.

There are other notations in common use. When x and y are Cartesian coor-

dinates in the plane the double integral is commonly written

=

and when a formula for f in terms of x and y is at hand it is usually

written out in the integral; eg.,
I} 2 sin xy dx dy
xX+y *
S

This notation looks ahead to the fact that double integrals are usually

evaluated by performing two successive ordinary integrations.

The proof that upper sums and lower sums are eventually close together

is instructive. For a fixed subdivision rl, ‘1‘2, ey '1‘n
UL = z (Hi-mi)Area‘ri.

D 2 ArenTi = D Area S8,

IA

where D is the largest of the numbers Mi -m.

Given & >0, it is possible to choose & >0 so that
£
|£(p) - £(a)| < g5

whenever the points p and q are within & of one another. Hence, if we
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choose the T's so0 that any two points in the same Ti

another we.shall certainly have M, - m, < €[Area S, for all i. Then

D< £fArea S, and U - L < €. This shows that, in order to make U - L

are within 5 of one

small we must make the T's small, not in the sense of area, but small in the

sense of their linear dimensions. If we only made

them small in area, they could all be long and

thin. Then all of the numbers Mi -m might

be large.

Sometimes a more general type of Riemann sum is impoitant. After choosing

a subdivision of 38, pick one point Py in each part '1‘1 and form the

R = Zf(pi) Area Ti'

Since it 1is easy to see that R must come between the upper and lower sums

Riemann sum

for this subdivision, that is,
<y,

L<R
R must be a good approximation to J'Jf dA whenever all the T's are small.
]

Exercise. Let S be the unit square in JRZ; fe., S={<x,y>30<x,y<1}
Let f(x,y) = xy. Calculate the uppser and lower Riemann sums for f over S

2

using the subdivision of S into n~ small squares given by the lines

x=4/n, y=3/n, 4, 3=1,2, ..., n - 1. Evaluate

[ s
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8.6.6 Conversion to an iterated integral. The process of subdividing and

computing Riemann sums is even more impractical for double integrals than it is

for the one dimensional case. Double integrals.are usually evaluated by con-

verting them to two successive ordinary integrals.

Take a simple case to begin.
Suppose S 1is the rectangular
region between the y-axis and the
line x = a and between the x-axis

and the line y = b, where x and

RN \

y are Cartesian coordinates. Say )
. SRy S
the integrand 1s positive on S. /',, ,"
Then the double integral o ,,’/' /6’
. ’ 7
. ; -

[IF(x,y) da \/" yré :
s %

represents the volume of the solid
shown.

_ We can also get this volume by the familiar technique of "slicing.” We
review it briefly. Cut the solid into thin slices by planes parallel to the
y-z-plane, say x = Xy
X =% g and x = xy is approximately

i =1,2, ..., n. The volume of the slice between
(x, - % _3) x Blx,)

where B(xi) is the area of the cross-section made by the plane x = x,.

1
Hence the volume required is about

Z B(x:l)(xi - %)

This is a Riemann sum for the integral

)

a
®) jo B(x) dx.

As the slices are made thinner, the sums (7) converge both to the volume and
to the integral, so the volume is given by the integral (8).
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Now the cross-sectional area function itself can be obtained as an integral.

The area in the plane x = X 4s given by

b
B(A) jo F(A, ¥) dy.

Putting this together with our previous results we have

HF(x.y) dA = Ioa [ Job F(x,y) dy] dx

S
where it is understood that the inner integration is to be carried out with x
fixed.

Example. The double integral of the last exercise. S 1is the unit square.

o

= Jmamn¥
(o)
o
[}
4
&
&

=
@ = 7.

o=
x

Although the argument we have Just given for the equality of a double
integral and an iterated integral depends on geometrical consideration of volume,
it can be made purely analytic. Furthermore, it is valid for all continuous
integrands, they need not be positive. The argument could just as well have
been made by slicing the other way, that is, by planes parallel to the x-z-

plane. Then our conclusion would be

Ur-‘(x,y) dA = Iob [foa F(x,y) dx] dy
s

where it is now understood that the inner integration is carried out with y
held constant.

If the region S 1is not a rectangle with sides parallel to the axes, the
same ideas will work, but the area of a cross-section determined by a plane

X = X,

4 will be an integral whose limits may depend on x,.

i
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Suppose S 1is the triangular region

shown. Let us calculate

Jfou

When we slice in the plane x = X the

section will 1lie above the segment shown in the figure. It will actually be
a triangle with vertices at < %40, 0>, < Xy l-xi, 0>, and

<X l-xi, xi(l-xi) >, since the intersection of the plane x ~ x, with the

1
curved surface z = xy happens to be straight. We can find the area methodically

as an integral, however. It is

l-x
g 1 2
Io ¥ dy = 3 xi(l - xi) .

The solid in question extends from x =0 to x =1, so the overall volume
is

1
L ;—'x(l-x)zdx = ;_l#

Usually one converts a double integral directly into an iterated integral
without explicit consideration of the cross-sections. The only problem is to
determine the proper limits for the two definite integrals. When S is the
triangular region just considered

IIF(x,y) daA = Ll [Iol-x F(x,y) w]d.x
S

The large brackets are more often than not omitted. Note that only the region
S enters into the determination of the limits. Also note that the limits of
the inner integral may involve the variahle of the outer integration, but the
limits of the outer integral are numbers (which might appear as letters); they

do not involve the variables of integration.

In the above problem, if we decided to slice by planes parallel to the

x-z-plane, then x would be the variable of the inner integration. The limits
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for the inner integration would bs 0 and 1 - Y, and the limits of the
outer integration would be 0 and 1.

Suppose S is the triangular region shown : k4
here. We have a choice of two ways to convert {
a double integral over S into an iterated (1,
integral. If we keep x fixed at first and o
integrate with respect to y, then y varies ":, 5
from 0 to 2x. 1In the second integration — <oy X
t, 0

x varies from 0 to 1. Hence
lr2x
JJF(x,y) A = j j F(x,y) dy dx.
5 0’

If we start the other way, then y is fixed for the inmer integration and x

varies from %y to 1. In the second integration y varies from 0 to 2.
So

F(x,y) dA = 2 11 F(x,y) dx dy.
s 0 5y

It is often necessary to cut the region into pleces in order to represent
a double integral conveniently as an iterated

integral. If S5 is the parallogram shown

{3,2)
here, then
1
2 r2
[[roma = [[77 sam ey
s 05y X
a0

It

|
I R O L

This somewhat curious notation is often used to avoid repeating the integrand.

Since we have two ways (and, as we shall see presently, many more) to
convert a double integral into an iterated integral, it may happen, and often
does, that one way leads to easier computations than the other. Therefore, if

you want to compute the value of a double integral, it will often pay to look
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at both ways to convert to an iterated integral. Often a problem starts as an
iterated integral and can be simplified by conve:fting it to a double integral

and then back to an iterated integral the other way. The process of rsversing
the order of integration is valid whenever the integrand is continuous and the
region for the corresponding double integral is ordinary. Careful attention

must be paid to the limits of integration when reversing the order of integration.

Always make a diagram of the two-dimensional region.

Examples

a(a 3
f j Va© - x° dx dy.
oYy

We can perform the inner integration to get

I‘ (amc:os%--x2 va -y; ) dy.
0 a

There is a good deal of work required to finish this. (Integrate the first term

2

[Ty

by parts.) However, the original integral can be converted to
a(x
j I \/az - 31:E dy dx.
(V4]
The firat integration i1s now easy. We get

a 3

a
f x 32 - x2 dx = - -1-(32 - x2)3/2
0 3 0

wiw

We shall now sketch briefly the analytic argument behind the conversion of
a double integral into an iterated integral. We restrict ourselves to the
particularly easy case of a rectangular region with sides parallel to the axes.
The definition of a double integral takes no position on how the region is to
be cut up into smaller regions. Any way will do as long as all the little
regions are small in their longest dimension. One obvious way to subdivide S

18 by a grid of lines parallsl to the axes.

Let x = Xs X = Xyy eeny X = Xn1 be the lines of division parallel to the
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y-axis, and let ¥ =¥3, ¥ =¥py «o09 ¥ = Vp 3

CL - -
be the lines parallel to the x-axis. Put
Xy = a, X, =b, Yo ZC ¥y =d.
An intermediate Riemann sum for the double Cr--

integral may be found by taking the area of each

1little rectangle, multiplying by the value of
F at the upper right corner of the rectangle,
and adding. This gives

R = Flx,, y,0(x, = % 1), - ¥, 4)-

% Xyo Yy/0%y = X103 - Y3a

If we sum this doubly-indexed set of numbers first by 1 then by j we get
R D (Z Flxys y9)(xy - "1-1)) Oy - y5)-

3 i
Here the inner sum is a Riemann sum for calculating

b
I F(x, yJ) dx.
a

Hence

b .
R~ F(x, d.x) - .
[ s s, -y

The latter is & Riemann sum for caleculating

J;d (Lb F(x,y) dX) dy

Thus Riemann sums for the double integral are close to Riemann sums for the

iterated integral. Hence

gl'(x,y) dA = f l ® F(x,y) dx dy.

8.6.9 Polar coordinates. Another systematic way to subdivide a reglion is by a
fine grid of polar coordinate lines. This will be a particularly useful way

when the region S is conveniently described in polar coordinates. For the



moment suppose that S 1is bounded by the
rays at angles = and /3 . and the
circular arcs at distances ¢ and d from

the origin. Let the integrand be f : 3 —R.

We know that f can be expressed in terms
of the polar coordinate functions o and
83 say £ =G(p,8).

We subdivide the region 5 with raysat O = 6., 6= 8,

1 20 rt0 BF 8,

and with circular ares at f = P1s P = g voos P = Pn1: Put 80 = Oy

Sn =, Po =¢s [P, =d. Form the Riemann sum using the corner value for
f on each piece. Then
(20) . R = Z G(p;, GJ) By,

1,3
where Ai_'j is the area of the quasi-rectangular region bounded by the lines
6 = 93-1 and O = 9‘j and the circular arcs P =Py, and P = Py
The area of this piece is

A

2 2
1 (8- 8Py - L)

(Py+ Pra)l6y - 8;1)(py = pyy)-

(Recall that the area of a ple-shaped piece of a circle is one-half the central

N~ o

angle (in radians) times the square of the radius.) If we put this into (10)

and take the sumon j first, we get

1 .
R = ZE(Pi + Pi-l)(ZG(Pi’ SJ)(SJ - Sj_l))(/oi - Pi—l)
i 3
Here the inner sum is a Riemann sum for

(i}
e
LG(,oi,G) a8,
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hence
8
R~ Z t ey +pa) (L G(py.0) dg)(f’i - Piad
1

If the subdivision is fine enough, %— ( /.>1 + Pi-l) will be very nearly P 4 80

R Zij.(PiLBG(/’i’ o) "9)(/’1 T A

The latter is a Riemann sum for

Ld(Lpf’ G([J, 8) dB) d[o

If the errors at each step are carefully accounted for, this becomes a proof

that

o

Hrcm = fd Iﬁ(ac(p,S) abdap.
s [

We can do the integrations in the other order if we want and the result is

(o Id
L A G([),S)/Jd/)ds.
The mnemonic is "In polar coordinates, dA = pdp de." In the non-rigorous,
but sometimes helpful, formulation of caleulus with infinitesinmals, one says
that the little quasi-rectangular regions, when made infinitely small, become

true rectangles with dimensions d(: and pPdE and area Pd{’ d©@. Compare
this with "In Cartesian coordinates, dA = dxdy,”

Example. Find the integral of _pzsin © over the first quadrant of the
unit disk, Change it to an iterated integral in
polar coordinates. The limits are 0 and 1
for p, and 0 and T/2 ror. 8. So we
have

fol {)"/2 pisn® p asap Ll P @ =i
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It is not necessary that the boundaries of the region of integration be
polar coordinate lines, we can convert to an iterated integral as long as we
choose the limits of integration correctly. As before, the variable for the
second (outer) integration may appear in the limits of the first integration,
but neither variable of integration should appear in the limitslof the outer

integral.

Example. Find the area swept out by the radius in

generating one turn of Archimedes' spiral, P aB.

It is easy to see from the definition of the double

integral that the area of S is just the integral

of the constant function 1 over S, Since the

curve is given in polar coordinates, we convert to an iterated integral in
polar coordinates. Here p varies from 0 to a6, and then © varies

from 0 to 2. So the required area is

21T a® 2
f J' P dpae =f $d%0% a0 = 432,
o ‘o o 3

The integrand of a double integral may be specified in terms of Cartesian
coordinate functions, but nevertheless it may pay to convert it to an iterated
integral using the polar coordinate grid. In making this conversion it is
important to realize that the integrand must be expressed in terms of polar
coordinate functions. Remember that intrinsically the integrand is supposed
to be a function from S to R directly. The fact that it is presented in
terms of x and y does not alter the situation.

Example.. Find the double integral of x2 + y2 over the upper half of the

unit disk.
We could set this up as an iterated integral

using the Cartesian grid.

UZY
[ L‘“" VZ T a ax.
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The other integral looks no better. But if we notice that the integrand will

be simply  when expressed in polar c¢oordinates, we convert to polar coor-

[ [ ¢apae - T

o ‘0

dinates and get

Switching from Cartesian to polar coordinates enables us to evaluate the

one dimensional definite integral
o© 2
J o™ dx
0

which i3 very important in probability theory. Call this integral I. (It is

known that the indefinite integral of e"‘z

cannot be expressed as a combination
of elsmentary functions, so none of the ordinary methods can possibly evaluate I.)

. Then

r

{)co e'xzdx Lw e'yzdy
([t

= Io miom X Vax ay

Now this last integral is the iterated integral corresponding to the double
integral of o'xz'yz over the entire first quadrant. Since this region is’
unbounded, it is not an ordinary region and our theory does not apply directly.
This is an improper double integral, and haé to be considered as a limit of
double 1ntegrals.ovgr large ordinary regions. The essaential ideas are the same
as in one dimension. (See p. 4=55.) One cannot convert improper double integrals
to iterated integrals freely, but as is frequently the case, everything worim out

nicely when the integrand is everywhere positive as in this case. Hence we have
P = Ije-xz-yz dA
s

where S 1s the infinite first quadrant.

(.3
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Now we convert thls double integral to an iterated integral in polar

coordinates. We get

I =

> Jovr/ 2

2
Im e'P/J dp 46.
0

The pp which has appeared in the integrand is just what we need to be able to

complete the evaluation.

® 2
-7 <1
J; [ Fdf) =-3e
Hence IZ = Tlh, I= ;—'\/T—T. A truly remarkable result.

8.6.11 The directed double integral. The Riemann integral on the line is
defined in a manner strictly analogous to the definition of the double integral.
It is usually replaced very soon by the directed integral on the line. This is
a special case of the line integral discussed in chapter seven. The essential
feature 1s that integration is conceived as having a direction along the line
and the sign of an integral changes if the direction of integration is reversed.
Thus

b a

J' F(x) dx = - j Flx) dx.

a b

There is an analogous directed double integral in which one assigns an
orientation to the region of integration. When the orientation is reversed, the
sign of the integral changes. Except for the sign, the directed double integral
agrees with the double integral we have been studying.

There is also a theory of double integrals where the region of integration
may be on a curved surface. These are called surface integrals and theyvare
most commonly taken as directed, just as the most common form of line integral
on curves is directed; that is, they reverse sign when the orientation of the
region of integration is reversed. We shall not study them here.
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8.6.12 Surface areas. A useful application of double integrals is to the

computation of surface areas.

Let Cartesian coordinates be chosen as usual in space, and imagine the

x-y-plane to be horizontal. By vertical projection we mean the linear map
<ry8,t><r,s,0>

This drops (or lifts) points vertically into the x-y-plane. We want to

determine the effect of this transformation on surface area.

Consider first a non-vertical plane P. Non-vertical means it is the graph
of some function of degree at most one. Let S be an ordinary region in P,
and let 3" be its vertleal projection into the x<y-plane. 'If P is ‘
horizontal, then 3' is congruent to S and therefore has the same area as S.

Suppose that P 1s not horizontal. Then P 4s given by an equation
z2 =a +bx +oy

where b and ¢ are not both zero. P meets the x-y-plane in a line L.
If S5 418 a rectangular region in P with two sides parallel to L, then
S' is also rectangular with two sides parallel to L. Suppose the sides of
S parallel to L have length h and the others length k. Then S' has
dimensions h and k' where k' =k cos o
and ® 18 the angle between P and the
horizontal. (The figure shows a cross-
section in a plane perpendicular to L.)

Hence we have

Area S' = (cos X ) Area S.

From this it follows that the same relation
relation holds for any ordinary region S in P, because any gsuch region can be
almost filled with tiny squares having sides parallel and perpendicular to L.
The projections of these squares will almost £ill S' s ote. Putting the factor

cos ot on the other side of the equation we have
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1

—_ 0
co8 X Area 3

Area S =

for any ordinary region S and its image S°'.

The triples <0, 0, 1 > and < -b, -¢, 1 >, regarded as colum vectors,
are orthogonal to the x-y-plane and the plane P, respectively. Since the

angle between two planes is the angle between their normals,

1

cos o = ﬁ
Vi+b“ +c

So the relation between areas becomes

3) Area S = V1 +b° + ¢ Area S' .

Now consider a Cl-function f defined on all or part of the x-y-plane.
and let S' be an ordinary region in the domain of f. The graph G of f
is a smooth surface in space. The set S of points of G 1lying over (or under)
points of S' form a two-dimensional region on G which we may appropriately
call an ordinary region on G, since it will be bounded by a finite number of

smooth curves and corners. We want to find the area of S.
b

Divide S' into small‘ ordinary regions Tl" 2', vy Tn', each so small
that df is practically constant on each of them. (This means that both partial
derivatives of f are practically constant on each Ti' .) Above each Ti'
is an ordinary region Ty on G.

At a point p of G there is a tangent plane. Its equation is
3
) z=a+g§(p')x+§§-(p')y

where p' 1is the projection of p and a 1s a constant whose value is

irrelevant at the moment. If we let p vary within one of the regions Ti’

p' will vary in Ti" Our choice of the T's then shows that all of the

tangent planes (l4) are virtually parallel. Thus ’1‘1 is almost on a plane.

It seems plausible therefore that
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(1s) Area Ti ~y \/1 + (z—i(p' ))2 + (%(;:n'))2 Area Ti"

no matter how p' 1is chosen in Ti' . (This is in accordance with (13).)
If we add up these inequalities for all indices i, we get

(16)  Area s Z /1 + (%(pi'))z + (%5(;,,‘-))2 Area T,".
i

Here pi' is just any point chosen in Ti" This sum 1s a Riemann sum for

@) [ VP~ (EF o
S'

As the regions Ti' are made smaller, the tangent planes (14) at points

within a single Ti become more nearly parallel, hence the errors in the

approximations (15) become relatively less and the total ‘error in (16) becomes

arbitrarily small. We conclude that the area of S is given by the integral (17).

A few words are in order about the argument for (15). It cannot be made
rigorous since we do not have a definition of surface area. How should we define
it? Perhaps we should just define it in terms of the double integral (17).

But we cannot make up definitions for a concept like surface area arbitrarily.
If mathematics is to have any relevance to the real world, we must be sure that
the technical definitions of concepts which, like surface area, purport to model
reality do have a plausible relation to our perceptions. Hence, if a definition
of surface area is offered and it turns out that we cannot justify the foregoing
arguments with it, there would be good reason to'suspect that the definition is
inappropriate. Technical definitions for smooth surfaces have been worked out
and it can be shown that there is really only one way to assign area to each
ordinary region on a smooth surface so that various plausible requirements are
satisfied. For rough surfaces, for example, surfaces that are the graphs of

merely continuous functions, the situation is not yet completely understood.

|
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As an example we shall calculate the area of a sphers, say the sphere with
equation

x2 +y2 fzz =az.

First we restrict ourselves to the upper hemisphere. Since that is not an
ordinary reglion on the graph of a C1 ~function, we restrict further to the
part lying over the disk of radius b (< a) centered at the origin. This is

an ordinary region on the graph of the Cl -function

f = az-xz-yz.
Then
of _ _x £ _ _x
x £ Xy £

IV GF G o

taken over the small disk. The integrand simplifies to a/f. Since

we convert to an iterated integral via the polar coordinate grid. We get
217a (-\/ az —Pz)

27a {a - az - bz)

b

d() de

0

21 b a
bk

It

Now we let b —a and we find that the area of the hemisphere is 21ra2.

The area of the whole sphere is lHraz, a familiar result.

We could have taken the integral from the beginning over the disk in the
plane of radius a, but that would have been an improper integral since the
integrand isn't defined at boundary points and is unbounded as we approach the
boundary. We did what one always does in dealing with improper integrals,
namely, integrate over a slightly smaller region and take the limit as the

region gets larger. In simple cases the intermediate steps are usually elided.
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